
KPConvX: Modernizing Kernel Point Convolution with Kernel Attention

Supplementary Material

Abstract

This supplementary material is divided into the following
sections.
• Appendix A presents the kernel point initialization

method.
• Appendix B details our network architectures and train-

ing parameters.
• Appendix C discusses a double shortcut block design.
• Appendix D describes how we create stochastic depth in

our networks.
• Appendix E present full results on S3DIS dataset, and dis-

cusses the data preprocessing as full scenes or rooms.
• Appendix F gathers additional ablation and parameter

studies on S3DIS dataset.
• Appendix G present full results on Scannet dataset for our

four architectures.
Our implementation can be found in the following

GitHub repository: https:// github.com/ apple/ ml-kpconvx

A. Kernel Points Initialization

As explained in the main paper, we use kernel points simi-
larly to [18] and adopt a shell definition of the kernel point
positions as proposed in [10]. The original KPConv [18]
defined the kernel points regularly on a sphere with an opti-
mization scheme, but did not have the option to have more
than one shell. SPConv [10] proposed to initialize multiple
kernels with different radii independently, and then merge
them together. On the contrary, we choose to initialize all
the kernels together, in a unified optimization scheme simi-
lar to the one used in KPConv but with constraints enforced
on the radius of each shell.

Let s be the number of shells and [1, N1, ..., Ns] be the
number of points per shell. Note that we do not count the
center point as a shell as it will always be alone and cen-
tered in the sphere. The first step in our kernel initialization
method is to compute the shell radii rj (j ≤ s). We dis-
tribute them regularly along the radius of the kernel sphere
r, as shown in Fig. 3 of the main paper:

∀j ∈ N, 1 ≤ j ≤ s, rj =
2j

2s+ 1
r . (1)

For each kernel point x̃k, we apply the same repulsive po-
tential as in [18]:

∀x ∈ R3, Erep
k (x) =

1

∥x− x̃k∥
, (2)

but without any attractive potential. Therefore we are trying
to minimize

Etot =
∑
k<K

∑
l ̸=k

Erep
k (x̃l) . (3)

However, we enforce the constraint that every point can
only move on the sphere defined by its shell radius:

∀j ≤ s, Kj ≤ k < Kj+1, ∥x̃k∥ = rj , (4)

where Kj = 1 +N1 + ...+Nj−1. We use the same gradi-
ent descent algorithm as [18], therefore, the constraint can
be applied directly to the gradients, similarly to the other
constraints that were already in place, such as the one fix-
ing the first point at the center of the sphere. The whole
process is illustrated in Fig. 1

B. Training Parameters and Augmentations
This section details all the training parameters and the aug-
mentation used for our experiments.
S3DIS and ScanNetv2. We share the same parameters for
all our architectures. We use the following number of chan-
nels for each layer: [64, 96, 128, 192, 256]. As explained in
the main paper, we start with 64 features and expand with
a ratio of

√
2, while still ensuring that the number of chan-

nels remains divisible by 16. We train for 180 epochs with
300 steps per epoch. With an effective batch size of 24, we
thus see approximately 7200 input point clouds per epoch.
We use an initial learning rate of 5e−3 and reduce the learn-
ing rate exponentially at each epoch, at a rate of 0.1 every
60 epochs. We use a weight decay of 0.01 in AdamW, and

Figure 1. Illustration of our optimization function for kernel point
disposition. First, the force applied to each kernel point is com-
puted (1). Then the resulting movements are constrained to the
shell spheres (2).

https://github.com/apple/ml-kpconvx


standard values β1 = 0.9, β2 = 0.999, and eps = 1e−8.
Concerning augmentations, we follow [16] with some mod-
ifications and use (in this order):
• RandomScale (smin = 0.9, smax = 1.1)
• RandomFlip (axis = 0, p = 0.5)
• RandomJitter (σ = 0.005)
• RandomRotate (axis = 2)
• ChromaticAutoContrast (p = 0.2)
• ChromaticNormalize ()
• RandomDropColor (p = 0.2)
ScanObjectNN. For ScanObjectNN, we use a 7-channel
input feature containing a constant one feature, the point
coordinates before augmentation, and the point coor-
dinates after augmentation. The feature channels are
[64, 96, 128, 192, 256], following the same

√
2 expansion

rule. Our networks are trained for 180 epochs, with enough
steps to cover all the input shapes at each epoch, given a
batch size of 64. The other training parameters are the same
as the ones used for S3DIS. We augment the data with:
• UnitSphereScale (R = 1.0)
• RandomScale (smin = 0.9, smax = 1.1)
• RandomFlip (axis = 0, p = 0.5)
• RandomRotate (axis = 2)

C. Discussion on Double Shortcut Blocks
The common practice for deep convolutional networks and
transformers is to alternate between local feature extraction
(convolution or self-attention) and linear layers. It is con-
sidered more efficient to reduce the complexity of the local
feature extractor, by making it depthwise and trusting the
linear layers to combine features in the channel dimension.
The gain in memory consumption usually allows networks
to be deeper and reach better performance [12]. Since the
original ResNet bottleneck block [4] was designed, it has
been the base for the development of newer blocks, with a
shortcut connection to solve the vanishing gradient issue.

More recently, the inverted bottleneck design has be-
come more popular [12, 16]. Compared to the bottleneck
design that starts with a downsampling MLP, follows with
a local extractor, and finishes with an upsampling MLP, the
inverted design places the local extractor at the beginning of
the block and has two MLPs that upsample and then down-
sample the features. Although the two designs might seem
very different, they are, in fact, nearly the same. If we take
a step back and look at the succession of operations, it is
always the same: downsampling MLP, local extractor, up-
sampling MLP, downsampling MLP, etc. The only thing
that changes in the series is the placement of the short-
cut connection, as shown in Fig. 2. In the first block, the
shortcut propagates the high-dimensional features, and in
the second, it propagates the low-dimensional features.

During our experiments, we tested with a novel design
that combines both types of shortcuts in the same compu-

Figure 2. Illustration of our double shortcut block design, com-
pared to ResNet bottleneck and inverted bottleneck blocks. The
basic operations are the same, only the features’ path changes.

tation graph. We still define blocks in the manner of the
inverted bottleneck design, but we add a shortcut between
consecutive blocks. This provides an additional path to help
propagate the gradients for the high-dimensional features.

Nevertheless, the improvement brought by the double
shortcut design was not significant enough. Furthermore,
additional experiments on image datasets would be neces-
sary to validate this design, which is why we decided to
keep this idea in the supplementary material.

D. Stochastic Depth and DropPath Implemen-
tation

Stochastic depth [5] was proposed as a way to improve the
training of deep residual networks by randomly dropping
layers. For inference, all the layers are used to harness the
full power of the network, allowing for better information
and gradient flow. This technique highlights the significant
redundancy in deep residual networks. As shown in Fig. 3,
the standard way to implement this is to drop (multiply by
zeros) all the features from one element (point cloud) of the
batch, right before the shortcut addition. This ensures that
the features from the previous block are only propagated
forward, as if this block did not exist. This operation is
commonly referred to as DropPath.

In cases where all the batch elements are of the same
length, implementing this technique is straightforward.

Figure 3. Stochastic depth is easily adapted to double shortcut de-
sign, by dropping the same batch elements before both shortcuts.



Table 1. Classwise IoU for S3DIS experiment. Best results are highlighted in bold and results within 1% of the best ones are underlined.

Method Data mIoU mAcc OA ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [14] full 41.1 49.0 - 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [17] full 48.9 57.4 - 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
PointCNN [9] full 57.3 63.9 85.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
SPGraph [7] full 58.0 66.5 86.4 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
SegGCN [8] full 63.6 70.4 88.2 93.7 98.6 80.6 0.0 28.5 42.6 74.5 88.7 80.9 71.3 69.0 44.4 54.3
MinkUNet [2] rooms 65.4 71.7 - 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
PAConv [20] rooms 66.6 73.0 - 94.6 98.6 82.4 0.0 26.4 58.0 60.0 89.7 80.4 74.3 69.8 73.5 57.7
KPConv [18] full 67.1 72.8 - 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
PTv1 [21] rooms 70.4 76.5 90.8 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
SPoTr [13] rooms 70.8 76.4 90.7 - - - - - - - - - - - - -
PointNeXt [16] rooms 70.5 76.8 90.6 94.2 98.5 84.4 0.0 37.7 59.3 74.0 83.1 91.6 77.4 77.2 78.8 60.6
PointMixer [1] rooms 71.4 77.4 - 94.2 98.2 86.0 0.0 43.8 62.1 78.5 90.6 82.2 73.9 79.8 78.5 59.4
PTv2 [19] rooms 71.6 77.9 91.1 - - - - - - - - - - - - -
StratTrans [6] rooms 72.0 78.1 91.5 96.2 98.7 85.6 0.0 46.1 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0
PointVector [3] rooms 72.3 78.1 91.0 95.1 98.6 85.1 0.0 41.4 60.8 76.7 84.4 92.1 82.0 77.2 85.1 61.4
PtMetaBase [11] rooms 72.3 - 91.3 - - - - - - - - - - - - -

KPConvX-L (ours) rooms 73.5 78.7 91.7 94.9 98.5 86.2 0.1 40.4 63.0 84.1 84.0 92.4 82.5 79.0 86.8 63.1

However, in our case where the batch elements are stacked
along the first dimension, we need to obtain a mask indicat-
ing the dropped batch elements. Furthermore, when using
our double shortcut design, we need to perform the Drop-
Path operation before both shortcuts, using the same mask
for the same batch elements. We provide a custom imple-
mentation of the common DropPath operation in our open-
source code, enabling future work to utilize it as well.

E. Full Results on S3DIS and Discussion about
Data Preprocessing

As mentioned in the paper, we provide the full classwise
IoU of our best model on S3DIS Area5 in Tab. 1. We also
want to highlight an important factor in the results of this

Table 2. Architecture study for KPConvX. Best results are
highlighted in bold and results within 1% of the best ones are
underlined.

mIoU (5-try avg) TP GPU params

Architecture mean±std ins/s GB M

[4, 4, 12, 20, 4] + 1 72.3± 0.6 38.1 6.9 19.7
[5, 5, 13, 21, 4] + 0 71.6± 0.7 42.8 4.6 19.7
[4, 4, 12, 20, 4] + 0 72.1± 0.7 48.2 4.6 18.7
[3, 3, 9, 12, 3] + 1 * 72.4± 0.9 47.7 6.8 13.5
[4, 4, 4, 12, 4] + 1 72.2± 0.6 46.1 6.8 13.4
[3, 3, 3, 9, 3] + 1 72.1± 0.6 52.6 6.8 10.4
[2, 2, 2, 8, 2] + 1 71.7± 0.4 62.3 6.8 8.5
[2, 2, 2, 6, 2] + 1 71.5± 0.8 64.1 6.8 7.4
[2, 2, 2, 2, 2] + 1 70.9± 0.5 64.3 6.8 5.2
[3, 3, 3, 3, 3] + 0 70.0± 0.3 75.7 4.6 6.2
[2, 2, 2, 2, 2] + 0 68.8± 0.5 88.7 4.6 4.2

dataset that is often overlooked in previous work: there are
two ways to preprocess the data of S3DIS.

On the one hand, it is possible to load entire areas as
very large scenes and sample subsets (spheres or cubes) for
training [15, 18]. On the other hand, it is also possible to
load single rooms as smaller scenes and use them as in-
put, optionally dropping some points [16, 21]. We observe
a significant improvement when using the rooms, and we
choose this strategy in this paper. For transparency, we in-
dicate which data preprocessing (rooms or full scenes) was
used for each method in the state of the art in Tab. 1.

Table 3. Architecture study for KPConvD. Best results are
highlighted in bold and results within 1% of the best ones are
underlined.

mIoU (5-try avg) TP GPU params

Architecture mean±std ins/s GB M

[4, 4, 12, 20, 4] + 1 72.1± 0.4 59.5 4.6 11.3
[5, 5, 13, 21, 4] + 0 71.8± 0.3 57.1 4.6 11.3
[4, 4, 12, 20, 4] + 0 71.4± 0.5 68.9 4.6 10.8
[3, 3, 9, 12, 3] + 1 * 72.2± 0.7 64.1 4.6 7.8
[4, 4, 4, 12, 4] + 1 71.3± 0.8 50.5 4.6 7.8
[3, 3, 3, 9, 3] + 1 71.4± 0.4 65.5 4.6 6.1
[2, 2, 2, 8, 2] + 1 71.3± 0.5 75.7 4.6 5.0
[2, 2, 2, 6, 2] + 1 71.2± 0.4 79.5 4.6 4.4
[2, 2, 2, 2, 2] + 1 70.6± 0.6 85.7 4.6 3.2
[3, 3, 3, 3, 3] + 0 70.2± 0.4 94.0 4.6 3.7
[2, 2, 2, 2, 2] + 0 69.5± 0.3 115.5 4.6 2.6



Table 4. Study of the kernel point shells. Best results are
highlighted in bold and results within 1% of the best ones are
underlined.

mIoU (5-try avg) TP GPU params

Kernel Point Shells mean±std ins/s GB M

[1, 6] 70.6± 0.4 65.9 3.2 9.3
[1, 12] 70.9± 0.9 61.4 3.6 10.0
[1, 14] 71.4± 1.1 59.7 3.7 10.2
[1, 19] 71.5± 0.7 57.4 4.1 10.8
[1, 28] 71.8± 0.5 52.5 5.0 11.9
[1, 12, 14] 71.7± 0.7 51.8 4.7 11.6
[1, 12, 19] 72.3± 0.5 52.4 5.4 12.2
[1, 12, 28] 72.0± 0.4 50.0 6.6 13.3
[1, 14, 19] 71.9± 0.9 51.3 5.7 12.5
[1, 14, 28]* 72.4± 0.6 47.7 6.8 13.5
[1, 14, 35] 72.3± 0.5 46.1 7.7 14.3
[1, 14, 42] 72.3± 0.7 42.9 8.6 15.1
[1, 19, 28] 72.0± 0.5 44.5 7.5 14.1
[1, 19, 35] 72.2± 0.5 45.8 8.4 14.9
[1, 19, 42] 72.4± 0.3 42.2 9.3 15.7

F. Additional Ablation and Parameter Studies

In this section, we provide additional ablation and parame-
ter studies that were not crucial for the paper but are inter-
esting for the reader to gain more insight into the mecha-
nisms of our approach. For this larger study, we provide the
average score over 5 attempts.

First, we present full architecture studies for KPConvX
and KPConvD, respectively. For the purpose of this experi-
ment, we define our architectures as [N1, N2, N3, N4, N5]+
Ndec, where Ni is the number of blocks for layer i and
Ndec is the number of decoder blocks used (same for each
layer). For clarity, in the main paper, we chose to high-
light two architectures: small ([2, 2, 2, 8, 2] + 1) and large
([3, 3, 9, 12, 3] + 1). In Tab. 2 and Tab. 3, we can find
these two architectures along with other architecture vari-
ants. The architecture sizes vary from the original one used
by KPConv ([2, 2, 2, 2, 2] + 0) to an extremely large archi-
tecture [4, 4, 12, 20, 4]+1. We find that bigger architectures
perform better than smaller architectures, but when reach-
ing an extremely large size above KPConvX-L, the perfor-
mance drops again. We also notice that adding a decoder
layer improves the performance even compared to an archi-
tecture that has one more encoder layer to compensate.

Then, we showcase a study of the number of kernel
points and shells for KPConvX in Tab. 4. The studied ker-
nel point dispositions range from a very simple one-shell
[1, 6] disposition where each kernel point is placed in a car-
dinal direction, to a large two-shell [1, 19, 42] disposition.
We observe a general trend where larger kernels improve
the results. However, similarly to the architecture study, we
observe that the performance stops improving if the num-

Table 5. Parameter study of the convolution radius. Best results
are highlighted in bold and results within 1% of the best ones are
underlined.

mIoU (5-try avg) TP GPU params

Convolution radius mean±std ins/s GB M

r = 1.3 71.7± 0.5 47.6 6.8 13.5
r = 1.4 72.1± 0.5 47.8 6.8 13.5
r = 1.5 71.9± 0.4 47.5 6.8 13.5
r = 1.6 71.8± 0.4 47.9 6.8 13.5
r = 1.7 71.9± 0.3 47.8 6.8 13.5
r = 1.8 71.9± 0.7 47.2 6.8 13.5
r = 1.9 72.1± 0.4 48.1 6.8 13.5
r = 2 72.1± 0.5 47.4 6.8 13.5
r = 2.1 * 72.4± 0.6 47.7 6.8 13.5
r = 2.2 71.9± 0.4 47.1 6.8 13.5
r = 2.3 72.0± 0.3 47.8 6.8 13.5
r = 2.4 72.2± 0.6 47.8 6.8 13.5
r = 2.5 72.0± 0.6 47.4 6.8 13.5
r = 2.6 72.1± 0.4 47.9 6.8 13.5
r = 2.7 72.0± 0.4 47.9 6.8 13.5
r = 2.8 71.9± 0.3 47.8 6.8 13.5
r = 2.9 71.7± 0.5 47.2 6.8 13.5
r = 3 72.0± 0.5 47.2 6.8 13.5
r = 3.1 71.6± 0.5 46.7 6.8 13.5

ber of kernel points increases too much. We thus chose the
[1, 14, 28] disposition which led to the best results in this
experiment.

Finally, we also study the radius of our convolution ker-
nel in Tab. 5. This parameter does not affect the network’s
size or efficiency. The effect of changing the convolution
radius is that it changes the position of the kernel points
in space, scaling the radius of each shell accordingly. The
kernel points will be associated with different neighbors de-
pending on their position. If the radius is too small, further
neighbors will not have any associated kernel points, and
the kernel points placed near the center will be less likely
to have any associated neighbors. If the radius is too large,
the area covered by each kernel point will be bigger, and
the kernel will thus be less descriptive, missing finer details
in the input point patterns. Therefore, we find an optimal
radius value of 2.1. As a reminder, the radius value is de-
fined relative to the subsampling grid size at every layer.
For example, with a 2.1 radius, the first convolution radius
on S3DIS data, which is subsampled at 4cm, is 8.4cm.

G. Full Results on Scannet

We also provide the full classwise IoU for our 4 models on
the Scannet validation set. As shown in Tab. 6. KPConvX-L
is our best network on this dataset as well, followed closely
by KPConvD-L. Note that, as opposed to S3DIS, Scannet
input point clouds can only be defined as rooms.



Table 6. Classwise IoU for Scannet experiment. Best results are highlighted in bold and results within 1% of the best ones are underlined.

Model mIoU oth
erf

urn
itu

re

ba
tht

ub

sin
k

toi
let

sh
ow

er

ref
rid

ge
rat

or

cu
rta

in

de
sk

co
un

ter

pic
tur

e

bo
ok

sh
elf

wind
ow

do
or

tab
le

so
fa

ch
air

be
d

ca
bin

et

floo
r

wall

KPConvX-L 76.3 61.9 85.6 71.5 93.9 64.3 64.5 77.2 68.8 70.0 40.5 81.8 74.2 72.8 79.6 85.6 92.2 84.4 74.0 95.9 87.2
KPConvX-S 75.7 63.9 88.1 70.6 95.0 68.2 64.6 77.9 64.1 71.1 38.1 83.0 69.0 72.1 76.3 84.1 91.6 82.6 70.2 95.7 87.2
KPConvD-L 76.2 61.1 87.9 72.4 94.1 74.0 61.8 80.1 69.9 70.2 35.4 84.7 69.2 70.8 77.2 84.8 92.8 84.7 70.5 95.7 86.8
KPConvD-S 75.5 63.4 89.9 71.3 92.2 67.2 62.1 78.5 64.5 68.4 39.7 82.6 70.5 72.0 75.3 81.2 91.5 84.7 71.3 95.9 87.0

References
[1] Jaesung Choe, Chunghyun Park, Francois Rameau, Jaesik

Park, and In So Kweon. Pointmixer: Mlp-mixer for point
cloud understanding. In European Conference on Computer
Vision, pages 620–640. Springer, 2022. 3

[2] Christopher Choy, JunYoung Gwak, and Silvio Savarese.
4d spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3075–
3084, 2019. 3

[3] Xin Deng, WenYu Zhang, Qing Ding, and XinMing Zhang.
Pointvector: A vector representation in point cloud analysis.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9455–9465, 2023. 3

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 2

[5] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q Weinberger. Deep networks with stochastic depth. In
European conference on computer vision, pages 646–661.
Springer, 2016. 2

[6] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified Trans-
former for 3D Point Cloud Segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8500–8509, 2022. 3

[7] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4558–4567, 2018. 3

[8] Huan Lei, Naveed Akhtar, and Ajmal Mian. Seggcn: Effi-
cient 3d point cloud segmentation with fuzzy spherical ker-
nel. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11611–11620,
2020. 3

[9] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In Advances in Neural Information Processing Sys-
tems, pages 820–830, 2018. 3

[10] Yuyan Li, Chuanmao Fan, Xu Wang, and Ye Duan. Spnet:
Multi-shell kernel convolution for point cloud semantic seg-
mentation. In International Symposium on Visual Comput-
ing, pages 366–378. Springer, 2021. 1

[11] Haojia Lin, Xiawu Zheng, Lijiang Li, Fei Chao, Shanshan
Wang, Yan Wang, Yonghong Tian, and Rongrong Ji. Meta
architecture for point cloud analysis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17682–17691, 2023. 3

[12] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976–11986,
2022. 2

[13] Jinyoung Park, Sanghyeok Lee, Sihyeon Kim, Yunyang
Xiong, and Hyunwoo J Kim. Self-positioning point-based
transformer for point cloud understanding. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 21814–21823, 2023. 3

[14] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 652–660,
2017. 3

[15] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. In Advances in Neural Information Processing
Systems, pages 5099–5108, 2017. 3

[16] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Abed Al Kader Hammoud, Mohamed Elhoseiny, and
Bernard Ghanem. PointNeXt: Revisiting PointNet++ with
Improved Training and Scaling Strategies. arXiv preprint
arXiv:2206.04670, 2022. 2, 3

[17] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung
Gwak, and Silvio Savarese. Segcloud: Semantic segmen-
tation of 3d point clouds. In 2017 International Conference
on 3D Vision (3DV), pages 537–547. IEEE, 2017. 3

[18] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 6411–6420, 2019. 1, 3

[19] Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Heng-
shuang Zhao. Point transformer v2: Grouped vector atten-
tion and partition-based pooling. In NeurIPS, 2022. 3

[20] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiao-
juan Qi. Paconv: Position adaptive convolution with dy-
namic kernel assembling on point clouds. In Proceedings of



the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3173–3182, 2021. 3

[21] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 16259–16268, 2021. 3


	. Kernel Points Initialization
	. Training Parameters and Augmentations
	. Discussion on Double Shortcut Blocks
	. Stochastic Depth and DropPath Implementation
	. Full Results on S3DIS and Discussion about Data Preprocessing
	. Additional Ablation and Parameter Studies
	. Full Results on Scannet

