ArGue: Attribute-Guided Prompt Tuning for Vision-Language Models

Supplementary Material

A. Prompting Large Language Models

The cornerstone of our contributions lies in the creation of
class-specific attributes using LLMs. In this section, we
offer a comprehensive insight into our attribute generation
process. In our experimental setup, we systematically
produce a set of J = 15 attributes for each class, consti-
tuting an attribute pool. Concretely, we leverage 3 distinct
LLM templates, with each template yielding 5 attributes.
Our approach to attribute generation involves employing
in-context learning, wherein we initially present two
example questions and then prompt the model to respond
to a third query [11]. Furthermore, for each inquiry, we
maintain a maximum token length of 200, while setting the
temperature parameter to 0.8.

Template 1

Q: Describe what an animal giraffe looks like in a photo,
list 6 pieces?

A: There are 6 useful visual features for a giraffe in a
photo:

- covered with a spotted coat

- has a short, stocky body

- has a long neck

- owns a small neck to its body

- is yellow or brown in color

- have a black tufted tail

Q: Describe what an equipment laptop looks like in a
photo, list 4 pieces?

A: There are 4 useful visual features for a laptop in a
photo:

- has a built-in touchpad below the keyboard

- has a black screen

- attached with charging ports

- owns a QWERTY keyboard

Q: Describe what a {rype} {class} looks like in a
photo, list {num} pieces?

A: There are {num} useful visual features for a {class} in
a photo:

Template 2

Q: Visually describe a giraffe, a type of animal, list 6
pieces?

A: There are 6 useful visual features for a giraffe in a
photo:

- covered with a spotted coat

- has a short, stocky body

- has a long neck

- owns a small neck to its body
- is yellow or brown in color

- have a black tufted tail

Q: Visually describe a laptop, a type of equipment,
list 4 pieces?

A: There are 4 useful visual features for a laptop in a
photo:

- has a built-in touchpad below the keyboard

- has a black screen

- attached with charging ports

- owns a QWERTY keyboard

Q: Visually describe a {class}, a type of {type}, list
{num} pieces?

A: There are {num} useful visual features for a {class} in
a photo:

Template 3

Q: How to distinguish a giraffe which is an animal, list 6
pleces?

A: There are 6 useful visual features for a giraffe in a
photo:

- covered with a spotted coat

- has a short, stocky body

- has a long neck

- owns a small neck to its body

- is yellow or brown in color

- have a black tufted tail

Q: How to distinguish a laptop which is an equip-
ment, list 4 pieces?

A: There are 4 useful visual features for a laptop in a
photo:

- has a built-in touchpad below the keyboard

- has a black screen

- attached with charging ports

- owns a QWERTY keyboard

Q: How to distinguish a {class} which is a {type},
list {num} pieces?

A: There are {num} useful visual features for a {class} in
a photo:

{class} signifies the class name, and {type} represents
a generic class type specific to the dataset, e.g., pet for Ox-



Dataset Class name Attr. 1 Attr. 2 Attr. 3 Atr. 4 Attr. 5 Attr. 6 Aur. 7 Attr. 8 Attr. 9 Aur. 10 Al Top 3

FuroSAT Industrial Buildings | 86.42 88.52 85.06 89.13 87.18 89.73 9029 8746 8744 86.07 89.61 9048
Annual Crop Land | 91.53  89.15 9247 91.05 87.80 8849 89.34 9122 9237 9192 91.14 9272

UCF101 Blowing Candles | 79.29 81.88 7636 7849 8042 7991 82.89 80.70 79.22 7848 81.16 8247
Basketball Dunk 81.86 82.11 80.87 7881 81.65 7947 8241 80.13 8239 81.37 81.42 8250

Food101 Chicken Quesadilla | 93.76 92.34 9341 91.21 9239 9320 91.75 90.81 93.80 91.72 92.34 9338l
Breakfast Burrito | 90.80 91.56 89.68 90.67 91.68 9047 90.71 91.84 90.74 89.23 9134 91.65

Table 1. The results of ArGue concerning the selection of different attribute sets. We conduct experiments using 10 attributes generated
by 2 LLM templates for each class. The selection scenarios include: 1) choosing a single attribute iteratively, 2) selecting all attributes, and
3) choosing the top 3 attributes based on the performance of single attribute training. The model is trained on the selected attributes, and
the evaluation is based on the average accuracy across both the base and novel classes. Note that here we only evaluate the accuracy of the

listed class. The results underlined indicate the top 3 attributes.

fordPets [13]. This distinction serves to mitigate potential
ambiguity in cases of polysemy [14], e.g., bank which can
refer to either a financial institution or a geographical loca-
tion. The parameter {num} indicates the desired number
of attributes we instruct the language model to generate.
Upon generating the attribute pool, we perform attribute
sampling, selecting only 3 attributes for the training pro-
cess.

B. Example Generated Attributes

In this section, we present examples of attributes generated
by LLMs. We have randomly selected one class from
ImageNet [5] and one class from Flowers102 [12] to
represent both the general classification and fine-grained
classification, respectively. The attributes highlighted in
green are the ones selected through attribute sampling for
training. It’s important to note that a complete textual
prompt for the text encoder should include the following
format: {template} {class} {attr} rather than only listing
the attributes themselves. In prompt tuning, the template is
replaced by soft tokens.

A photo of a tiger cat which
is covered in stripes of orange, black, and white
has a long, thick coat of fur
has a medium-sized body

has orange or red tones

has large, pointed ears

has round, yellow eyes

has a long, thick tail

has a pointed muzzle

has a short muzzle

has a spotted fur

has a broad head

has sharp claws

A photo of a oxeye daisy which

has a broader, much-divided, and toothed leaves
petals are arranged in a flat, circular shape
blooms a single flower in the late spring
exhibits white petals around the center
grows in abundance in meadows

has a broad, flat flower head

grows in grassland habitats

has a waxy, papery texture

has an invigorating scent

prefers sunny, dry places

has bright yellow center

has a sturdy, thick stem

grows up to 30 cm tall

has short, hollow stem

has leafy green stems

C. Attribute Study

In this section, we validate the motivation behind attribute
sampling, which is our belief that certain attributes in the
attribute pool are more semantically relevant than others to
the images and thus more crucial. We randomly select 2
classes from EuroSAT [6], UCF101 [15], and Food101 [1],
generating 10 attributes for each class. This entails em-
ploying 2 LLM templates, with each template yielding 5
attributes. Table 1 demonstrates the results when different
sets of attributes are selected for training.

Some attributes are much better than others. It is evi-
dent from our observations that the choice of attributes sig-
nificantly impacts the model’s accuracy. For instance, in the
case of the Industrial Buildings class in EuroSAT, Attr. 7
outperforms Attr. 3 by a substantial margin of 5.23%. This
observation highlights the unequal importance of various
attributes in the training process, indicating that specific
attributes may provide more advantages in enhancing the
model’s performance.

Combining useful attributes enhances the performance.
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Figure 1. The absolute improvement of manual labeling com-
pared with LLMs on novel class prediction. We randomly se-
lect 10 classes from each benchmark dataset for simplicity, i.e., 5
base classes and 5 novel classes. The accuracy is calculated solely
based on the selected classes. It is worth noting that we have omit-
ted the incorporation of negative prompting in the comparison, and
attribute sampling has not been applied in the context of manual
labeling.

When we endeavor to train the model by combining the
top three attributes based on the single attribute training, al-
though this straightforward combination doesn’t efficiently
eliminate redundant attributes as attribute sampling does,
we observe that the model’s accuracy exceeds that of using
all attributes and consistently outperforms the best results
achieved with single attribute training. This finding lays a
practical groundwork for attribute sampling.

D. Manual Labeling vs LLMs

In light of the previous attribute study, we demonstrate that
distinct attributes can exert a significant influence on the
model accuracy. This section delves deeper into exploring
the performance boundaries of ArGue, while also raising
questions about the potential for further improvement in the
attributes generated by LLMs. As part of this investigation,
we manually annotate attributes for 10 classes randomly se-
lected from benchmark datasets and conduct a comparative
analysis with attributes generated by LLMs. Following the
setting in previous experiments, we annotate 3 attributes for
each class. We declare that manual labeling is not consid-
ered the main contribution of this article, due to its imprac-
ticality in scenarios characterized by complex dataset distri-
butions or a high number of classes. Our primary objective
here is to illustrate that ArGue can unleash greater potential
when equipped with more precise and semantically relevant
attributes.

Manual labeling demonstrates a more pronounced ad-
vantage on specialized datasets. Fig. | presents a compar-
ison of model accuracy when manual labeling is employed
versus the use of LLMs. Notably, for commonly encoun-
tered categories, e.g., OxfordPets, ImageNet, manual la-
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Figure 2. ColoredMNIST.

CoOp | CoOp + Van. Neg. | CoOp + Man. Neg.
78.32 86.01 92.19

Table 2. The test accuracy on the subpopulation shift. We com-
pare among CoOp, CoOp with vanilla negative prompting (Van.
Neg.), and CoOp with manual negative prompting (Man. Neg.).

beling does not exhibit substantial deviations from LLM-
generated attributes. However, the distinct advantage of
manual labeling becomes evident when dealing with less
prevalent datasets such as satellite imagery (e.g., EuroSAT)
and textures (e.g., DTD [4]), resulting in an average per-
formance increase of around 2%. This discrepancy is com-
prehensible as LLMs lack pre-training data specific to such
datasets, rendering them less proficient in providing precise
attribute descriptions.

There is still room for improvement in generating at-
tributes using LLMs. In summary, manual labeling out-
performs LLMs on 9 out of 11 datasets. This implies that,
despite the application of attribute sampling, attributes gen-
erated by LLMs are generally less accurate than those ob-
tained through manual labeling. This can be attributed to 1)
LLMs lack direct access to images, making it challenging to
generate dataset-specific attributes, and 2) LLMs may have
inherent biases in their understanding of classes. We believe
that exploring more effective ways to generate large-scale,
high-quality attributes through LLMs is a promising direc-
tion for future research.

E. Negative Prompt Engineering

In this section, we delve into the intriguing concept of de-
signing an effective negative prompt. In prior sections, we
introduce a practical assumption wherein we set the nega-
tive attribute merely to background instead of specifying
a particular dataset. This approach offers the advantage of
obviating the requirement for extra manual labeling. Our
empirical investigations have indicated the efficacy of this
strategy across a majority of datasets.

Nonetheless, it is apparent that this approach necessitates
further examination, especially when dealing with specific
datasets. For example, datasets such as DTD or EuroSAT
exhibit spurious correlations that do not originate from the
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Figure 3. The accuracy of ID, i.e., ImageNet, and OOD, i.e.,
four variant datasets, while varying v compared with base-
lines. The OOD accuracy is averaged over four datasets.

Dataset CoOp CoCoOp LASP ArGue ArGue-N
A ImageNet |71.51 71.02 7134 7157 71.84
Caltech101 |93.70 9443 93.87 9478 9430
OxfordPets |89.14 90.14 91.74 93.43  93.75
StanfordCars | 64.51 65.32 68.16 69.85  70.48
Flowers102 | 68.71 71.88 71.18 7211  72.07
8 Food101 8530 86.06 89.71 89.93  90.41
O |FGVCAircraft | 1847 2294 28.15 31.70  32.90

SUN397 64.15 6736 6544 6923  72.46

DTD 4192 4573 59.03 57.34  60.06
EuroSAT 4639 4537 7279 8157 82.46
UCF101 66.55 6821 7098 72.09 72.76

Table 3. The results on cross-dataset transfer. The model
is trained on ImageNet, and evaluated on 10 entirely different
datasets.

image background. In such scenarios, the general negative
prompt may not effectively mitigate incorrect rationales.
Hence, within this section, we delve into the prospect of de-
vising an interpretable and more contextually suitable neg-
ative prompt tailored to a dataset. Furthermore, our objec-
tive is to illustrate that the scope and efficacy of negative
prompting extend beyond a singular, predefined prompt.
We create the ColoredMNIST dataset, which, alongside
the handwritten digit labels ranging from O to 9, incorpo-
rates a distinctive background color assigned to each la-
bel in the training set. Empirically, conventional prompt
tuning exhibits a propensity to acquire spurious correla-
tions between colors and labels, thereby deviating from the
primary objective of recognizing digit shapes. In the test
set, we introduce subpopulation shift by randomly associ-
ating 10 different colors with the 10 labels. Fig. 2 pro-
vides a visual representation of the images corresponding
to each label, accompanied by their respective background
colors. We establish two baseline methods: CoOp [17],
i.e., vanilla prompt tuning, and CoOp with vanilla neg-
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Figure 4. The results for two tasks with varying numbers of
shots. It is important to note that, given CLIP’s status as a pre-
trained model, its performance remains constant regardless of the
number of shots. The average accuracy denotes the mean perfor-
mance results aggregated from all datasets within the current task.
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Figure 5. The results of ArGue on novel class prediction with
varying cluster numbers, i.e., N from 1 to 15. The accuracy
is averaged over all the benchmark datasets across base and novel
classes.

ative prompting, which exclusively utilizes the general
negative prompt, ie., the background of a {digit}. Ad-
ditionally, we develop 10 negative prompts tailored for
each class manually. These customized negative prompts
are structured to encompass the specific colors associated
with the labels, e.g., the green background of a zero or
the purple background of a three. In essence, beyond
employing a general attribute, we introduce more pre-
cise specifications for addressing the spurious correlations
within each class. It’s worth noting that, for a fair com-
parison with vanilla prompt tuning, in this experiment, we
exclusively utilize negative prompting without employing
any additional class-specific attributes for attribute-guided
prompt tuning. In other words, our experiment is solely
based on CoOp implementation.

Table 2 presents a comparison between CoOp, CoOp
with vanilla negative prompting, and CoOp with manual
negative prompting. It is evident that merely using the back-
ground as the negative attribute results in an approximately
8% increase compared to CoOp. Furthermore, employing
class-wise attributes, i.e., specifying the background color
for each class, leads to an additional 6% improvement.
While this synthetic dataset leans toward the ideal side due
to its highly apparent and easy-to-specify spurious correla-
tions, it also indicates that negative prompting holds greater
potential when enhanced prior knowledge and more speci-



Baseline | =0 S=5 B=10 B=20 B=50 B=100
LASP | 59.85 6143 6185 6156 5932  59.04
ArGueN | 6124 6294 6286 6291 6225  61.53

Table 4. The average results on the OOD task while varying (.

fications are available. We believe that designing effective
negative prompts is a promising area for future research.

F. Cross-Dataset Transfer

In this section, we assess ArGue and contemporary state-of-
the-art methods on a more demanding task, namely, cross-
dataset transfer. This task involves training the model on
an in-distribution dataset and evaluating its performance on
entirely different datasets, making it more challenging but
indicative of broader potential. The results for this task are
presented in Table 3.

G. Prompting Weight Analysis

In our empirical findings, we have observed that the weight
of negative prompting in the loss function, i.e., 7y, exerts
a substantial influence on the training performance. This
section is dedicated to a comprehensive analysis of the re-
lationship between  and the experimental outcomes.

Fig. 3 illustrates the performance of ArGue-N in the
OOD generalization task as the value of gamma varies from
0 to 5. Commencing at v = 0, representative of ArGue,
the model’s accuracy in both ID and OOD datasets exhibits
gradual improvement as +y increases. This progression sig-
nifies the model’s effective transition from concentrating
on spurious correlations to intrinsic semantics. When ~y
reaches 3, the model achieves its highest ID accuracy. How-
ever, further increments in y lead to a decline in OOD accu-
racy. This phenomenon is comprehensible because, at this
stage, the loss associated with negative prompting becomes
disproportionately significant, causing the model to over-
look the minimization of the original classification loss, ul-
timately resulting in underfitting. Empirically, we conclude
that the optimal range for y lies between 2.5 and 3.5.

H. Cluster Number Analysis

Attribute sampling indicates that it is not necessary to utilize
the entire set of attributes within the attribute pool. Rather,
employing a small subset is adequate to achieve or even sur-
pass the performance of using all attributes. Nevertheless,
determining the optimal proportion of this subset involves
a trade-off. Choosing too few attributes may result in an
insufficient semantic component of the class, while an ex-
cessive number of attributes can lead to redundancy, causing
computational burdens or introducing ineffective attributes.
In this section, we delve into the discussion of identifying

Set |ProDA PLOT PBPrompt MaPLe ALIGN | ArGue ArGue-N
Base| 81.56 82.46  80.88 82.28 83.38 | 83.69 83.77
New | 72.30 72.53 74.74 75.14  75.51 | 78.07 78.74
H | 76.65 77.18 77.69 78.55 79.25 | 80.83  81.22

Table 5. The average results of base & new acc. over 11 datasets
on more state-of-the-art methods.

the optimal proportion for this small subset. Specifically,
based on the outcomes of previous experiments, we gen-
erate 15 attributes for each class, constituting an attribute
pool. We linearly vary the cluster number, i.e., N, from
1 to 15 and evaluate its performance in the context of the
novel class prediction task. It is noteworthy that, taking into
account the distinctive characteristics of classes, a poten-
tially more effective strategy involves determining an op-
timal cluster number for each class, i.e., N.. While this
expands the search space, potentially yielding enhanced re-
sults, it also introduces additional computational complex-
ity. We leave the exploration of this approach to future
work.

Fig. 5 illustrates the results of ArGue in the context of
novel class prediction. For simplicity, negative prompting
is omitted in the context. From the figure, it is evident that
the accuracy notably increases as the cluster number ranges
from 1 to 3. This phenomenon is ascribed to the meticulous
selection of attributes within this range, emphasizing their
semantic relevance and representativeness. At the inflec-
tion point of 4, with the continued increase in the cluster
number, a gradual decline in accuracy is observed due to
the influence of certain ineffective attributes. As the cluster
number reaches 15, attribute sampling is entirely inopera-
tive, causing ArGue to degrade to vanilla attribute-guided
prompt tuning with regularization. Given the above obser-
vations, we posit that a cluster number of 3 or 4 is the most
suitable choice. Since we aim to minimize the number of
attributes to reduce computational burden, N = 3 is pre-
ferred.

I. Further Comparison

Varying shots. In this section, we present a comparison
of our model’s performance with different shot numbers in
contrast to various baselines. Fig. 4 showcases the perfor-
mance of our method and the baselines at 1, 2, 4, 8, and
16 shots. As depicted, there is a notable trend of improved
accuracy across most methods as the number of shots in-
creases. Notably, ArGue-N consistently outperforms the
other methods, and this advantage is most prominent when
the number of shots is limited.

Varying 5. Considering that prompt regularization has
been studied in [2], our choice of [ is following their setup
for fairness. To study the impact of 3, we select [2] as the
baseline and compare the results while varying S in Table 4.



Notably, we observe that optimal performance is achieved
when f ranges between 5 and 20. This empirical finding
aligns with the experimental setup in [2], where they use
B8 = 20.

Other baselines.. We also compare our method with
other state-of-the-art methods encompassing ProDA [9],
PLOT [3], PBPrompt [8], MaPLe [7] and ALIGN [16]. The
results are displayed in Table 5.

J. Limitation Analysis

In this section, we outline the limitations of our work, pro-
viding several potential avenues for future research in the
field.

Relative Discriminative Attributes. Attribute sampling
enables us to select attributes from a class’s attribute pool
that are both representative and highly semantically relevant
to the associated images. Nonetheless, in a classification
context, it is crucial to consider the interrelationships be-
tween attributes across different classes. Take, for instance,
the FGVCAircraft [10] classification task, where we ob-
serve that LLMs often produce similar attributes for distinct
classes. This phenomenon arises because each class serves
as a subcategory within the broader “aircraft” category,
sharing numerous common features. When these common
attributes are shared across all classes in the dataset, it be-
comes arduous to employ them effectively for class dif-
ferentiation. Attributes that can uniquely discriminate one
class from others are denoted as relative discriminative at-
tributes signifying that other classes lack these particular at-
tributes. We posit that relative discriminative attributes of-
fer a more robust characterization of individual classes, and
exploring methods for their selection represents a potential
avenue for future research.

Attribute Quality of LLMs. Manually annotating at-
tributes for each class is a resource-intensive and time-
consuming task. Nevertheless, our prior comparative analy-
sis between human-generated annotations and the attributes
produced by LLMs has underscored the fact that LLMs still
have room for improvement in generating accurate and ex-
haustive attributes. We are optimistic that as LLMs continue
to advance at a rapid pace, our approach will inherently gain
from these developments, potentially yielding more sub-
stantial advancements.
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