9. Appendix
9.1. Stable Diffusion Architecture

-1

Encoder \ I}
64x64 X2
Down- 32%32 X2
sampling
Flow 16x16 | x2
r----
| 8x8 : X2
Middle Flow 8x8 x1
r===71
| 8x8 | x3
————— Contains a
Transformer
Up- 16x16 | x3 Layer
sampling o
Flow 32x32 | x3 :_ '
|
64X64 X3 Does not
_ Contain a
Decod I \ Transformer
ecoader L - - -\ Layer

Figure 10. Stable Diffusion Model Schematics. There are in total
16 blocks having Transformer Layers. Each generates a 4D self-
attention tensor of different resolutions.

9.2. Discussion on Averaging Multi-head A ttentions

In Sec. 3.1, we mentioned that DiffSeg averages the multi-
head attention along the multi-head axis, reducing a 5D ten-
sor to 4D. This is motivated by the fact that different at-
tention heads capture very similar correlations. To show
this, we calculate the average KL distance across the multi-
head axis for all attention tensors of different resolutions
used for segmentation. We use 180 training data to calcu-
late the following statistics in Tab. 4. The difference across

‘ COCO ‘ Cityscapes
Avg. multi-heads KL 0.46 0.45

Merge Threshold KL (7) 1.10 0.90

Table 4. Average KL distance across the multi-head axis and the
merge threshold used in the paper.

the multi-head channels is much smaller than the KL merge
threshold used in the paper. This means that the attentions

are very similar across the channels and they would have
been merged together if not averaged at first because their
distance is well below the merge threshold.

9.3. Iterative Attention Aggregation

Algorithm 1 Iterative Attention Merging
Require: £,, Af, N, T

£y ={ b Sapen Aslisllo = 1,..., M2}
where V = {(i, /)ID (La[u], Afi. 1)) < 7}
for N — 1 iterations do
Initialize £, = []
for Ain £, do
V= ﬁ > wey Lp[v] > Merge attention maps
where V = {v|D (A, L,[v]) < 7}
AddV to L,
Remove £, [v]
end for
L, L,
end for

YveV fromL,

9.4. Comparisons to K-Means and DBSCAN Base-
lines

DiffSeg uses an iterative merging process to generate the
segmentation mask to avoid two major limitations of popu-
lar k-means clustering-based algorithms: 1) K-means needs
specification of the number of clusters and 2) K-means is
stochastic depending on initialization of cluster initializa-
tion. In this section, we present a comparison between
DiffSeg and a K-means baseline. Specifically, after the At-
tention Aggregation stage, we obtain a 4D attention tensor
Ap € R4, Instead of using iterative merging as in Diff-
Seg, we directly apply the K-means algorithm on tensor Ay.
To do this, we reshape the tensor to 4096 x 4096, which
represents 4096 vectors of dimension 4096. The goal is to
cluster the 4096 vectors into IV clusters.

We use the Sklearn k-means implementation [2] with k-
means++ initialization [5]. We present results for the num-
ber of clusters using a constant number averaged over all
evaluated images and a specific number for each image. The
average number and specific number are obtained from the
ground truth segmentation masks. We use the COCO-Stuff
dataset as the benchmark.

DBSCAN [13] is a classic density-based clustering algo-
rithm that does not require the number of clusters as input.
We use the Sklearn DBSCAN implementation [1] with the
default Euclidean metric. We sweep eps, which determines
the maximum distance for a pair of samples to be consid-
ered as neighbors. The same as the K-means implementa-
tion, we directly apply DBSCAN to Ay.

9.5. DinoSeg

DiffSeg is a generic unsupervised clustering algorithm the-
oretically applicable to any Transfer features backbone. In
this section, we adopt DiffSeg to a DINO backbone [9].
Specifically, we use a DINO-Base backbone with a patch
size of 8. DINO takes images at a resolution of 224.

The pipeline is similar to that of DiffSeg, the only dif-
ference being the attention aggregation. DINO produces at-
tention tensors of the same spatial size 28 x 28 for all its
layers. Therefore, aggregation simply averages over all 12
layers and 12 multi-head channels.

As shown in Tab. 1, the performance of DinoSeg is
worse than that of DiffSeg. There can be multiple rea-
sons. 1) DINO is pre-trained on ImageNetlK, which is
much smaller than LAIONSB [35]. 2) DINO’s input im-
ages are of lower resolution. 3) The spatial dimension of
DINO’s attention outputs is only 28 x 28, which is smaller
than the 64 x resolution found in Stable Diffusion.

9.6. Additional Ablation study

Most of them have a reasonable range that works well for
general settings. Therefore, we do not tune them for each
dataset and model. One exception is the KL threshold pa-
rameter 7. It is the most sensitive parameter as it directly
controls the attention-merging process. We tune this param-
eter in our experiments on a small subset (180 images) from
the training set from the respective datasets. All sensitivity
study experiments are also conducted on the respective sub-
sets.

Time step (¢). The stable diffusion model requires
a time step ¢ to indicate the current stage of the diffu-
sion process. Because DiffSeg only runs a single pass
through the diffusion process, the time step becomes a
hyper-parameter. In Fig. 11a, we demonstrate the ef-
fects of setting this parameter to different numbers ¢ €
{1,100, 200, 300, 400, 500} while keeping the other hyper-
parameters constant (R = propto., M? = 256, N = 3,7 =
1.0). In the figure, we observe a general upward trend for
accuracy and mloU when increasing the time step, which
peaked around ¢ = 300. Therefore, we use ¢t = 300 for our
main results.

Number of anchors (M?). DiffSeg generates a sam-
pling grid of M? anchors to start off the attention-merging
process. In Fig. 11b, we show the number of proposals
and accuracy with different numbers of anchor points M €
{4,8,16,32} while keeping the other hyper-parameters
constant (R = propto.,t = 100, N = 3,7 = 1.0). We
observe that the number of anchor points does not signif-
icantly affect the performance of COCO-Stuff-27. There-
fore, we keep the default M = 16.

Number of merging iterations (V). The iterative at-
tention merging process runs for N iterations. Intuitively,
the more iterations, the more proposals will be merged.

In Fig. 11c, we show the effects of increasing the num-
ber of iterations N € {2,3,4,5,6,7} in terms of the num-
ber of final objects and accuracy while keeping the other
hyper-parameters constant (R = propto., M? = 256,t =
100, 7 = 1.0). We observe that at the 3rd iteration, the num-
ber of proposals drops to a reasonable amount and the accu-
racy remains similar afterward. Therefore, we use K = 3
for a better system latency and performance trade-off.

KL threshold (7). The iterative attention merging pro-
cess also requires specifying the KL threshold 7. It is ar-
guably the most sensitive hyper-parameter and should be
tuned preferably separately for each dataset. Too small
a threshold leads to too many proposals and too large
leads to too few proposals. In Fig. 11d, we show the ef-
fect of = € {0.7,0.8,0.9,1.0,1.1,1.2,1.3} while using
the validated values for the other hyper-parameters (R =
propto., M? = 256,t = 100, N = 3). We observe that a
range 7 € [0.9,1.1] should yield reasonable performance.
We select 7 = 1.1 for COCO-Stuft-27 and 7 = 0.9 for
Cityscapes, identified using the same procedure.

A Note on the Hyper-Parameters. We found that the
same set of (R, ¢, M, N') works generally well for different
settings. The only more sensitive parameter is 7. A reason-
able range for 7 is between 0.9 and 1.1. We would suggest
using the default 7 = 1.0 for the segmentation of images
in the wild. For the best benchmark results, proper hyper-
parameter selection is preferred.

9.7. Limitations

While the zero-shot capability of DiffSeg enables it to seg-
ment almost any image, thanks to the generalization capa-
bility of the stable diffusion backbone, its performance on
more specialized datasets such as self-driving datasets, e.g.,
Cityscapes, is far from satisfaction. There are several poten-
tial reasons. 1) The resolution of the largest attention map is
64 x 64, which can be too small to segment small objects in
a self-driving dataset. 2) Stable diffusion models have lim-
ited exposure to self-driving scenes. The performance of
zero-shot methods largely relies on the generalization capa-
bility of the pre-trained model. If during the pre-training
stage, the stable diffusion model has not been exposed to a
vehicle-centric self-driving scene, it could negatively affect
the downstream performance. 3) While DiffSeg is much
simpler than competing methods such as ReCo [36], which
requires image retrieval and co-segmentation of a batch of
images, it is still not a real-time algorithm. This is because
the current stable diffusion model is very large, even though
DiffSeg only runs the diffusion step once. Also, the atten-
tion aggregation and merging process are iterative, which
incurs higher computation costs for CPU and GPU.

[100 200 300 400 00 5 10 5 20 3 0
Time step Num of Points

(a) Time Step ¢ (b) Number of Anchors M?2

2 3 4 5 6 7 07 08 09 10 11 12 13
Iters KL Threshold

(c) Number of Merging Iters. (IN) (d) KL threshold 7

Figure 11. Effects of the Time Step ¢, the Number of Anchors M2, the Number of Merging Iterations (V') and the KL Threshold 7 on
COCO-Suff-27. The same set of (R, t, M, N') works generally well for different settings (Tab. 3). A reasonable range for 7is 0.9 ~ 1.1.

DiffSeg Masks

Input Image
i Stable i Self-attention SL
—— Diffusion DiffSeg oo
i Model i e
I _[—— Cross-attention
“A group 0 -
Cross-Attention

1
1
| cars racing
| down a track.”
1

Extraction

Aggregate & Predict]

group

[Vocabulary Generation J

cars

track

Figure 12. Overview of Semantic DiffSeg. Semantic DiffSeg extends DiffSeg to add labels to generated masks. It has three major additional
components Vocabulary Generation, Cross-Attention Extraction and Aggregate & Predict.

9.8. Adding Semantics

While DiffSeg generates high-quality segmentation masks,
like SAM [20], it does not provide labels for each mask.
Inspired by recent open-vocabulary semantic segmentation
methods [25, 41], which use an off-the-shelf image cap-
tioning model to generate vocabularies for an image and
DiffuMask [39], which demonstrates the grounding capa-
bility of the cross-attention layers in a diffusion model,
we propose a simple extension to DiffSeg to produce la-
beled segmentation masks. We refer to the extended version
as Semantic DiffSeg. Specifically, Semantic DiffSeg has
three additional components: vocabulary generation, cross-
attention extraction, and aggregation & prediction as shown
in Fig. 12.

Vocabulary Generation. Following existing works in
open-vocabulary [25, 41] segmentation, we use an off-the-
shelf image captioning model, e.g., BLIP [23] to generate a
caption for a given image. Denote W = {wy,wa, ..., wg }
as the caption where each w represents a word in the cap-
tion. To construct the output label space, we extract all
nouns from the caption using the NLTK toolkit [28]. Im-
portantly, we also keep track of the relative position of the

noun word in the caption for indexing purposes. Formally,
let ' = {ny,nsg,...nz} denote the set of extracted nouns
from W and Z = {i1, 2, ...,i1} denote the set of indices
of the relative position corresponding to each noun in the
original caption W.

Cross-Attention Extraction. Unlike the vanilla Diff-
Seg, which uses the unconditional generation capability of
stable diffusion models for segmentation without a prompt
input, Semantic DiffSeg adds the generated caption W
as another input to extract meaningful grounded cross-
attention maps. DiffuMask [39] shows that cross-attention
maps corresponding to noun tokens provide grounding for
their respective concepts. Inspired by this finding, we also
extract the corresponding cross-attention maps from differ-
ent resolutions using the indices Z. Similar to the self-
attention formulation in Eq. 1, there are a total 16-cross
attention layers in a stable diffusion model, giving 16 cross-
attention tensor:

Ac € {A, € RheXwexQe =1 16}, (7

where () is the number of tokenized words in the in-
put caption sequence, e.g.,) = 77 for stable diffusion

models. Unlike the self-attention tensor, the cross-attention
tensor is a 3-dimensional tensor, where each A.[:,:,¢q] €
Rhexwe g € {1,..,Q} is the un-normalized attention map
w.r.t the token q. We now extract cross-attention maps cor-
responding to only the nouns in our caption using our index
set Z. Note that the caption length K is usually smaller
than the token sequence length @. Stable diffusion models
use BOS and EOS paddings to unify all input lengths to Q.
Therefore, in our case, the correct index of a noun word w.r.t
the padded tokens is its index ¢ + 1 resulting from the BOS
token offset. Finally, we obtain a cross-attention tensor A
corresponding only to the noun tokens.

An € {A, € RhnxwnxLip =1 . 16} (8)

Aggregation and Prediction. Similar to the self-
attention maps, the cross-attention maps in A s are of dif-
ferent resolutions. To aggregate them, we upsample the first
2 dimensions of each map to 512.

A, = Bilinear-upsample(A,,) € R512*512xL (9g)

Note this is slightly different from the upsampling of the
self-attention maps in Eq. 10, which upsamples the last
2 dimensions. Finally, we sum and normalize all cross-
attention maps to obtain the aggregated cross-attention ten-
sor A, s € R512x512XL gpecifically, the aggregated cross-
attention map Al , € R¥'2*512 corresponding to token [is

.Alf* Ziﬁ:l"in[:a:al]

= SB12 <512 16 7 :
D w1 Dbt 2ame1 Anfw, By

To obtain the final labeled masks, we combine A,y with
the output from DiffSeg £, € RN»x512x512 iy Eq. 6,
where IV,, denotes the number of generated masks and each
Lplny,:,:] € R¥2*512 s a binary mask. Specifically, for
each mask £,[n,,:,:],n, € {1,...,Np}, we calculate the
prediction vector ,,, € R”. Each element lflp in l,,, is cal-
culated as

(10)

= Lylng, 1] ® Angli,], (i

where ® denotes the element-wise product. Finally, the la-
bel for mask n,, is obtained by taking the maximum element
in the prediction vector ,,,. As a post-processing step, we
merge all masks with the same label into a single mask.

Seimentation

Figure 13. Semantic DiffSeg Example. First row: DiffSeg output.
Second row: semantic segmentation with mask merging. Gener-
ated caption: A group of cars racing down a track.

Segmentation

Figure 14. Semantic DiffSeg Example. First row: DiffSeg output.
Second row: semantic segmentation with mask merging. Gener-
ated caption: A red car parked in front of a building.

9.9. Additional Visualization

Figure 15. Examples of Segmentation on SUN-RGBD Images.
Overlay (left), Input (middle), and segmentation (right)

Figure 16. Examples of Segmentation on COCO-Stuft-27. Over-
lay (left), ground truth (middle), and segmentation (right)

Figure 17. Examples of Segmentation on Cityscapes. Overlay Figure 18. Examples of Segmentation on Synthetic Images (gen-
(left), ground truth (middle), and segmentation (right) erated by a stable diffusion model). Overlay (left), Input (middle),
and segmentation (right)

	. Introduction
	. Related Works
	. Method
	. Stable Diffusion Model Review
	. DiffSeg

	. Experiments
	. Main Results
	. Hyper-Parameter Study

	. Adding Semantics
	. Visualization
	. Conclusion
	. Acknowledgements
	. Appendix
	. Stable Diffusion Architecture
	. Discussion on Averaging Multi-head Attentions
	. Iterative Attention Aggregation
	. Comparisons to K-Means and DBSCAN Baselines
	. DinoSeg
	. Additional Ablation study
	. Limitations
	. Adding Semantics
	. Additional Visualization

