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Table 3. Summary of Evaluation Datasets.

Ethnic FaceScrub IMDB Cross-Modal DB
No. Identity 329 530 2,129 2,239

No. Modality Pair 25,816 79,876 89,424 190,876

Ratio of Gallery:Probe 5:95 40:60 40:60 40:60

No. Gallery:Probe Sets 1 3 3 3

Diversity of Ethnicity Yes N/A Yes Yes

N/A refers to not available.

7. Details of Evaluation Protocols
Four publicly accessible datasets are selected in this study,
namely, Ethnic [32], FaceScrub [21], IMDB [26], and
Cross-Modal DB [33]. Details of these datasets are pre-
sented in Table 3. We follow the evaluation protocol out-
lined in [32], which involves matching of a probe image
with images from the gallery sets. For the Ethnic dataset,
the ratio of gallery to probe sets is 5:95, while for Face-
Scrub, IMDB, and Cross-Modal DB, this ratio is standard-
ized at 40:60.

During the evaluation, all models trained in this study
function as feature extractors for both If and Ip modalities
across the gallery and probe sets. The process of matching
is carried out using cosine similarity as follows:

cos(A,B) = A · B
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where A and B represent the feature embedding vectors
cross the gallery and probe sets, respectively, with the di-
mension of e.

8. Additional Results
8.1. Analysis on Shared Salient Features
In cross-modality recognition for the face and periocular re-
gion, models are expected to focus on the eye region for ef-
fective matching. However, as illustrated in Figure 6, it is
shown that HA-ViT struggles to align and integrate cross-
modal information effectively, missing critical periocular
features. In contrast, our approach employs MPT and MFA
modules to capture periocular details from facial and pe-
riocular images adeptly. This observation underscores the
enhanced capability of our method in leveraging salient fea-
tures for cross-modality biometric recognition.
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Figure 6. Activation maps of MPT-ViT and HA-ViT

8.2. Impacts of MPT Strategies

We evaluate the effects of two MPT strategies: Deep re-
ferred explicitly to as MPT-D and Intermediate as MPT-I,
within our backbone structure MFA-ViT. The MPT-D strat-
egy entails integrating multimodal-prompt token embed-
dings throughout the input sequence, reaching each multi-
modal fusion attention layer. In contrast, the MPT-I strategy
introduces multimodal-prompt token embeddings at each
attention block’s output, resulting in fewer interactions than
the MPT-D strategy. This evaluation encompasses intra-
and cross-modality recognition and is conducted across
four datasets, as summarized in Table 4. All the models
are trained with the same number of epochs and hyper-
parameters.

As highlighted in Table 4, our findings reveal that uti-
lizing the MPT-D strategy consistently improves recogni-
tion accuracies for intra- and cross-modality tasks. This
improvement can be attributed to the deep integration of
prompt embeddings, which allows the model to capture in-
tricate relationships between modalities. However, the per-
formance of MPT-I is closely linked to the depth at which
prompt embeddings are inserted. In particular, inserting
prompt embeddings at each input of the Bk appears to have
a less significant impact on accuracy than MPT-D inserted
at every layer.

Furthermore, we also investigated the impact of varying
the size of P0

⇤ and presented the results for sizes 24 and 32
in Table 4. Interestingly, the experiments reveal that a larger
P0
⇤ size (i.e., 32) leads to significantly enhanced model per-

formance. This observation suggests that P0
⇤ size of 32 con-

sistently delivers reliable performance. Notably, when us-
ing a smaller P0

⇤ size, we observed a decrease in accuracy
by at least 1-2% across all tasks.

In addition, the MPT-D strategy significantly contributes
to improved accuracies in various recognition tasks, under-



Table 4. Performance comparisons on deep and intermediate MPT and classification head inputs (CLS and PRM) in terms of rank-1
recognition (%). The best accuracy is in bold, and the second-best is in italics.

M
PT

-D

M
PT

-I Head Input Ethnic FaceScrub IMDB Cross-Modal DB

CLS PRM f–f p–p f–p p–f f–f p–p f–p p–f f–f p–p f–p p–f f–f p–p f–p p–f
Using a size of 32 for P0

⇤
X X 94.57 89.18 86.24 88.34 95.26 92.63 89.81 91.51 85.32 79.43 74.52 76.36 85.11 75.53 71.06 74.35
X X 94.82 89.98 86.70 89.07 95.71 93.06 90.38 92.02 86.03 80.53 75.28 77.37 85.88 76.54 72.01 75.96

X X 94.40 88.76 85.28 87.55 93.23 90.12 86.29 87.76 83.03 77.49 71.88 72.92 81.35 74.08 70.11 72.29
X X 94.43 88.76 86.09 87.73 94.82 92.24 88.68 90.12 84.92 78.99 73.05 74.51 84.79 76.03 70.77 73.93

Using a size of 24 for P0
⇤

X X 92.73 86.62 83.71 86.01 93.71 89.73 86.29 88.73 81.55 73.90 67.78 70.67 81.54 69.52 64.17 68.68
X X 93.76 87.37 83.35 85.06 94.20 91.13 87.73 89.16 82.92 76.74 70.15 72.05 82.80 72.53 67.14 70.87

X X 92.54 85.91 82.49 83.79 93.22 89.40 85.54 87.53 80.57 73.42 66.75 69.01 80.80 68.93 63.13 67.37
X X 92.57 85.58 82.67 83.99 93.49 90.09 87.07 88.67 81.30 74.35 69.07 71.16 81.18 69.88 65.34 69.55

Table 5. FBR performance comparisons on different network backbones in terms of rank-1 recognition (%). The best accuracy is written
in bold.

Model Ethnic FaceScrub IMDB Cross-Modal DB
f–f p–p f–p p–f f–f p–p f–p p–f f–f p–p f–p p–f f–f p–p f–p p–f

VGGNet-16 [29] 90.16 80.34 61.36 56.44 91.70 88.17 78.84 69.73 76.33 69.95 54.43 46.73 75.67 66.32 50.42 44.73
MobileNet-v2 [27] 89.98 77.67 70.59 71.37 93.10 86.57 79.88 80.67 75.80 70.93 57.78 59.10 74.58 67.57 56.02 57.44
EfficientNet-D7 [30] 90.02 78.31 72.64 73.46 92.79 86.93 79.51 80.98 76.27 71.98 59.16 60.11 75.77 67.21 57.46 58.40
ViT-L/16 [4] 90.67 81.13 76.79 77.75 92.57 87.77 81.67 82.60 77.15 72.04 60.12 61.44 77.39 67.42 59.25 61.90
MFA-ViT 92.43 85.43 81.01 83.79 92.81 89.40 85.95 86.88 80.32 73.70 67.56 69.09 80.18 68.80 62.77 65.15

Table 6. Computational costs and model parameters on competing
backbone structures.

Model #Param (M) FLOPs (G) Backbone
VGGNet-16 171.68 31.22 CNN-based
MobileNet-v2 13.93 0.95 CNN-based
EfficentNet-D7 87.19 21.83 CNN-based
ViT-L/16 314.23 119.54 Transformer-based
MFA-ViT 98.81 31.29 Transformer-based

lining its effectiveness in enhancing the capabilities of our
model. Our experiments were constrained to P0

⇤ sizes of 24
and 32 due to memory limitations in our GPU hardware.
While our findings suggest that this size offers performance
advantages, further exploration with different sizes is war-
ranted. This highlights the significance of careful hyper-
parameter tuning in multimodal systems, especially when
hardware constraints come into play.

8.3. Impacts of Network Backbones

In addition, this study investigates various models trained
with If and Ip modalities using identical Ltotal loss func-
tion. The networks utilize several backbone architec-
tures, encompassing both CNN-based and transformer-
based models. CNN-based model include VGGNet-16
[29], MobileNet-v2 [27], and EfficientNet-B7 [30], while
transformer-based models include ViT-L/16 [4] and our
MFA-ViT without MPT.

Table 5 presents the results, highlighting that MFA-ViT,

even without a prompt strategy, consistently outperforms
other models in terms of rank-1 accuracy across all datasets.
We observe that this advantage is linked to the MFA layer.
Notably, despite the transformer-based architecture of ViT-
L/16, MFA-ViT exhibits superior performance. This dis-
crepancy can be attributed primarily to the comparative
ineffectiveness of its attention layer in aggregating multi-
modal features compared to our approach.

In essence, this study underscores the argument that re-
lying solely on contrastive loss function without integrating
the customized architectural design of MFA-ViT. The re-
sults indicate that the contrastive loss function exhibits lim-
itations in grappling with intricate aspects of sophisticated
tasks, such as feature fusion, alignment, and optimizing mu-
tual information between modalities, which are paramount
for achieving enhanced intra- and cross-modality learning
outcomes.

In Table 6, we also present a comprehensive overview
of each model’s characteristics, including their total pa-
rameter size (#Param.) and floating-point operations per
second (FLOPs). Notably, models like MobileNet-v2 and
EfficientNet-D7 demonstrate a favorable reduction in pa-
rameter sizes and lower computational demands for FLOPs
compared to our MFA-ViT. Despite these advantages in
computational efficiency, their performance consistently
lags behind that of MFA-ViT. This underscores that our
model delivers high performance and offers practicality and
scalability, making it well-suited for real-world applica-
tions.
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