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Non-minimal Certifiably Optimal Relative Pose without Disambiguation

Supplementary Material

In this supplementary material, we provide additional
details of our method in Supplementary A, proofs in Sup-
plementaries B and C and experiments in Supplementary D.

A. Additional details
A.1. Averaging of data-dependent constraints

We provide here compact expressions for averaging the
data-dependent coefficients of the quadratic terms stem-
ming from Eqs. (22) and (23). We will use the notation
a(j) to refer to the j − th element of a vector a.

Rotation. For clarity, we recall Eq. (22):

f̄1E
⊤[t]×f̄0 − s2r = 0 , (37)

The quadratic terms for one correspondence (f0, f1) are:
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where, e := vec(E⊤), as defined in the main paper.
With this ordering, the coefficients of the first nine terms

of Eq. (38) (from f
(0)
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(0)
1 to f

(2)
0 f

(2)
1 ) can be computed as

vec(f1f
⊤
0 ), which is a nine-dimensional vector (one element

per coefficient). Thus, the averaging of the terms across n
correspondences {f0,i, f1,i}ni=1 can be expressed as:
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Furthermore, the subsequent nine quadratic terms have the
same (but negated) coefficients. Thus, the values of Eq. (39)
can be reused for these coefficients.

Translation. For clarity, we recall Eq. (23):

hf̄⊤0 t− hf̄⊤1 q− s2t = 0 , (40)

The quadratic terms for one correspondence (f0, f1) are:
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In this case the coefficients of the quadratic terms are di-
rectly given by the bearings. Thus, the average for the first
three coefficients can be computed as 1/n

∑n
i f0, and as

−1/n
∑n

i f1 for the subsequent three coefficients.

A.2. Appropriate scaling of the solution estimates

As explained in Sec. 4.1, we extract the solution esti-
mates from the dominant singular vector, denoted as v0,
of X⋆

E,tq,h := X⋆
[1:16,1:16]. Following the ordering and

notation of the main paper, this corresponds to v0 =
[(e⋆)⊤, (t⋆)⊤, (q⋆)⊤, h]⊤. However, the norm constraints
enforced during the optimization, namely t⊤t = 1, q⊤q =
1 and tr(EE⊤) = 2, apply to X⋆ and not to v0. Conse-
quently, we cannot assume that the elements of this domi-
nant vector will be scaled appropriately even after multiply-
ing it with its singular value. The solution to this is straight-
forward: we separately normalize the vectors t and q to
make them unit vectors, and scale e := vec(E⊤) such that
its nonzero singular values equal 1 (in practice, we use the
SVD of E for greater precision). Finally, we leverage the
absence of products between the slack variable st and the
rest of the parameters in Prob. (QCQP) to directly read s2t
from its corresponding diagonal entry in X⋆, thus avoiding
the need to factorize X⋆ to obtain its value.

A.3. Pure rotations and numerical accuracy

Under pure rotations, considering an optimal essential ma-
trix, E⋆, any pair of translation vectors t,q ∈ S2 satisfying
the definition q := R⊤t will minimize the sum of squared
epipolar errors. Here, R ∈ SO(3) represents one of the two
rotation matrices corresponding to E⋆. Given that both t,q
belong to S2, one might expect to find two additional sin-
gular vectors corresponding to nonzero singular values, in
addition to the three singular vectors metioned in Sec. 4.1.
However, we empirically verified that four additional sin-
gular vectors appear instead. We observed the same phe-
nomenon in [23, 69]. This phenomenon likely occurs be-
cause the constraints apply only to the optimal matrix X⋆.
Therefore, the elements in the singular vectors of X⋆ do not
need to satisfy the norm constraints (e.g. that t,q belong to
S2) to still minimize the cost function. This may explain
the similar behavior noted in [10] regarding pure rotations.

Importantly, in our case, the correct solution can be
extracted from the dominant singular vector thanks to
Eq. (22), which enforces a larger singular value correspond-
ing to the vector containing the solution. However, for
pure rotations and in absence of noise, the component in
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Figure 8. Noise-free pure rotation scenarios. For our method, an edge case consists of noise-free pure rotational motions. In noise-free
scenarios (a) the estimate of h within the dominant singular vector—which contains the rest of the solution estimates—approaches 1 in
near-pure rotational motions (when the relative scale is < 10−4), negatively affecting the numerical accuracy of the other estimates. As
can be seen, we effectively address this by using the dominant singular vector from the submatrix excluding h. However, despite the
effectiveness of this solution, this numerical issue is not present in practical scenarios (b), (c), where noise affects the observations. These
visualizations depict results averaged across 1000 different random instances of the same synthetic scenarios considered in the main paper.

the (unit) singular vector corresponding to the homogeniza-
tion variable, h, dominates the rest, being close to ∼ 1.
This predominance reduces the numerical accuracy of the
other estimates (e, t and q). Since this behavior is only
present in a noise-free scenario, we can use a strict thresh-
old in the slack variable s2t (we use 10−4) to detect such
scenario. Consequently, only in this case, we extract the so-
lution from the dominant singular vector of the submatrix
corresponding only to e, t and q, leveraging the previous
numerically-inaccurate solution to just correct the sign of
this new numerically-accurate solution, if necessary. This
behavior is shown in Fig. 8.

B. Tightness of [69] when the SDP solution is
rank-2

In [69, Eq. 11] the following QCQP is considered:

Problem QCQP-Z

min
E,t

e⊤Ce , (42)

s.t. EE⊤ = [t]×[t]
⊤
×, t⊤t = 1 . (43)

The tightness conditions in [69, Th. 2] assume that tightness
of the semidefinite relaxation imply rank(X⋆) = 1, where
X⋆ represents the optimal solution of the SDP. In this sec-
tion, we adapt Theorem 4.1 to extend [69, Th. 2] and show
that Prob. (QCQP-Z) can also be tight when rank(X⋆) = 2.

With a similar notation as in the main paper, let us define
the following auxiliary variables:

X⋆
e := X⋆

[1:9,1:9] , X⋆
t := X⋆

[10:12,10:12] . (44)

Theorem B.1. The semidefinite relaxation of Prob.
(QCQP-Z) is tight if and only if rank(X⋆) ∈ [1, 2], and
its submatrices X⋆

e and X⋆
t are rank-1.

Proof. For the only if direction, assume the relaxation is
tight. Then, following [10], we can find X⋆ in the convex

hull of the linearly independent rank-1 solutions to the rel-
ative pose problem8:

X⋆ := α0x0x
⊤
0 + α1x1x

⊤
1 , (45)

x0 :=

[
e
t

]
, x1 :=

[
e
−t

]
, (46)

where α0, α1 are non-negative scalars such that α0 + α1 =
1. This last condition ensures that the cost is optimal, i.e.,
tr(C0X

⋆) = e⊤Ce, and that the resulting matrix X⋆ is
feasible. To see this, we can expand Eq. (45):

X⋆ =

[
(α0 + α1)ee

⊤ (α0 − α1)et
⊤

(α0 − α1)te
⊤ (α0 + α1)tt

⊤

]
, (47)

to verify that α0 + α1 = 1 is needed to satisfy the norm
constraint t⊤t = 1 (the rest of the constraints are satis-
fied for any valid combination of α0 and α1). This reveals
that when the semidefinite relaxation is tight, the diagonal
(upper-left and bottom-right) block matrices are rank-1 and
that rank(X⋆) ∈ {1, 2}. Specifically9, rank(X⋆) = 1
when α0 = 0 and α1 = 1 or when α0 = 1 and α1 = 0.
Otherwise rank(X⋆) = 2.

For the if part, we build upon [69, Theorem 2]. Since X⋆

is a positive semidefinite (PSD) matrix, X⋆
e and X⋆

t are also
PSD as they are principal submatrices of X⋆ [55]. Given
that X⋆

e and X⋆
t are both rank-1 matrices, it follows that

there exist two vectors e⋆ ∈ R9 and t⋆ ∈ R3 that fulfill
the primal problem’s constraints and satisfy e⋆(e⋆)⊤ = X⋆

e

and t⋆(t⋆)⊤ = X⋆
t .

Regarding the rank of X⋆, since it is PSD, it can be
factorized as X⋆ = LL⊤, where L ∈ R12×r and r :=
rank(X⋆). Thus, to satisfy the rank-1 property of X⋆

e and

8Note that the outer products of the negative counterparts, [−e⊤,−t⊤]
and [−e⊤, t⊤], are not included, as they yield the same outer product.

9In practice, off-the-shelf SDP solvers [33, 57, 64] return a rank-2
block-diagonal solution [23], which corresponds to setting α0 = α1 =
0.5 in Eqs. (45) and (47).



X⋆
t , each column k of L must be given by: [ake⊤, bkt⊤]⊤,

for some scalars ak, bk ∈ R. This constraint limits the rank
of X⋆ to at most 2, as any additional column in L would be
a linear combination of the existing ones. Therefore, since
X⋆ must be feasible, this implies that rank(X⋆) ∈ [1, 2]
and that it is a convex combination of the two linearly in-
dependent solutions, stemming from Eq. (45), and thus the
relaxation is tight.

C. Algebraic derivation of Equation (36)
Given estimates of the relative rotation and translation
(R, t), and a correspondence (f0, f1), the midpoint method
triangulates the corresponding 3D point p ∈ R3. It identi-
fies this point as the midpoint (mean) of the common per-
pendicular to the two rays originating from the bearings [3].
Specifically, it determines the norms λ0, λ1 ∈ R of the 3D
points, p0 := λ0f0,p1 := λ1f1, in each camera reference
system, that minimize the squared error ∥p0−(Rp1+t)∥2:

λ0, λ1 = arg min
λ0,λ1

∥λ0f0 − (λ1Rf1 + t)∥2 . (48)

If the 3D points and their midpoint (mean) satisfy the
cheirality constraints, both norms λ0 and λ1 will be posi-
tive. Otherwise, at least one of the norms will be estimated
as negative [60]. As will be shown, it is not necessary to
explicitly compute λ0 and λ1 to estimate their signs.

The rays of ideal, noise-free correspondences meet in a
3D point, satisfying λ0f0 − λ1Rf1 = t, or in matrix form:

[
f0 −Rf1

]︸ ︷︷ ︸
A∈R3×2

[
λ0

λ1

]
= t (49)

In practice, we minimize the squared errors. As such, an
equivalent solution to Eq. (48) is given as the solution to the
system A⊤A [λ0, λ1]

⊤ = A⊤t:[
1 −f⊤0 Rf1

−f⊤0 Rf1 1

] [
λ0

λ1

]
=

[
f⊤0

−(Rf1)
⊤

]
t , (50)

where we have used that (fk)⊤fk = 1, k ∈ {0, 1} since
f0, f1 ∈ S2. Expanding Equation (50) leads to:

λ0 − λ1f
⊤
0 Rf1 = f⊤0 t , (51)

λ1 − λ0f
⊤
0 Rf1 = −(Rf1)

⊤t . (52)

which leads to the equivalent equations:

s2λ1 =−(Rf1)
⊤t+ (f⊤0 Rf1)(f

⊤
0 t) , (53)

s2λ0 = f⊤0 t− (f⊤0 Rf1)((Rf1)
⊤t) . (54)

where

s2 := 1− (f⊤0 Rf1)
2 = sin2 ∠(f0,Rf1) . (55)

Since s2 ≥ 0, this implies that the RHS of Eqs. (53)
and (54) must be positive for λ0, λ1 to be positive too:

−(Rf1)
⊤t+ (f⊤0 Rf1)(f

⊤
0 t) > 0 , (56)

f⊤0 t− (f⊤0 Rf1)((Rf1)
⊤t) > 0 , (57)

Lastly, to express Eqs. (56) and (57) in compact form, we
can use the property of the cross product:

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) , (58)

for any a,b, c,d ∈ R3, and with a · b = a⊤b representing
the dot product between any vectors a,b. With this prop-
erty, we reach the inequalities:

(Rf1 × f0) · (f0 × t) > 0 , (59)
(Rf1 × f0) · (Rf1 × t) > 0 , (60)

corresponding thus to Eq. (36).

D. Additional experiments
D.1. Accuracy vs noise and translation magnitude

In Figure 9, we show additional synthetic experiments. In
Fig. 9(a)-(e), we verify that the conclusions drawn in Fig. 6
are consistent across different of levels of noise. In regimes
with a small number of points (Fig. 9(a),(c)), our C2P and
[23] perform the best. Notably, C2P is faster than [23] (see
Fig. 5) and slightly outperforms it in estimating translation
(Fig. 9(c)). In regimes with a large number of points, the
accuracy of our faster version of C2P is on-par with C2P
itself and [23]. In Fig. 9(e), we fix the number of points
at 1000 while varying the noise level and observe the same
behavior. Finally, in Fig. 9(f), we demonstrate that C2P
performs as well as [23, 69] when varying the scale of the
translation w.r.t. the scene, and unlike them, C2P is also
capable of directly detecting near-pure rotational motions
and does not need posterior disambiguation step.

D.2. Real-data

Following [23, 69], we test our method on all the sequences
from Strecha et al. [56]. We generate 97 wide-baseline im-
age pairs by grouping adjacent images. For each image pair,
correspondences are extracted using DoG + SIFT [43]. We
then use the RANSAC implementation of OpenGV [35] to
filter out wrong correspondences, setting the inlier thresh-
old to 5 pix, which we found sufficient given the images
resolution of 3072 × 2048 pix. The performance of C2P(-
fast) and [23, 69] is shown in Fig. 10. The results align with
those from the synthetic experiments. C2P-fast is the fastest
among all the methods. However, C2P-fast is not always
tight, resulting in a slight loss of accuracy with respect to
the alternatives. On the other hand, our C2P is significantly
more accurate than [69] and is on-par with [23]. Addition-
ally, our C2P is 40% faster than [23] on average.
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Figure 9. Additional synthetic experiments. We evaluate our proposed C2P and C2P-fast under various conditions: (a)-(d) number of
correspondences, (a)-(e) noise levels, and (f) relative translation scale w.r.t. scene. As shown in (b) and (d), C2P-fast is well-suited for
scenarios where n > 103, performing on-par with C2P and [23, 69], while being faster (Fig. 5). With fewer correspondences, as shown in
(a) and (c), C2P outperforms [69], slightly surpassing the accuracy of [23] in estimating the translation, while also being faster. The same
conclusions are reached when varying the noise levels (e). Finally, in (f) we show that C2P performs as well as [23, 69] when varying the
scale of the translation relative to the scene, and unlike them, C2P is capable of directly detecting near-pure rotational motions.
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Figure 10. Performance across all sequences (97 pairs) from Strecha et al. [56]. (left) Relative rotation and translation errors (in
degrees) for all image pairs. (right) Averaged execution times for computing the relative pose for each method. As can be seen, C2P-fast
is the fastest among all methods. However, C2P-fast is not always tight, resulting in a slight loss of accuracy when compared to the
alternatives. On the other hand, our C2P is significantly more accurate than Zhao [69] and is on-par with Garcia-Salguero et al. [23]
(labeled on the left as G-Salg.). Additionally, our C2P is, on average, 40% faster than [23].


