SatSynth: Augmenting Image-Mask Pairs through Diffusion Models
for Aerial Semantic Segmentation

Supplementary Material

A. Object-centric segmentation analysis

Our results of object-centric segmentation on iSAID
in Sec. 5.4 demonstrate substantial improvements for five
separate baseline approaches, including general segmenta-
tion models [31, 65, 71] and approaches tailored for satel-
lite imagery [34, 73]. We additionally provide a per-class
analysis of the results reported in Tab. 2 of the main paper,
summarized in Tab. 6. A key insight is that, beyond overall
improvements of the average scores, a majority of individ-
ual classes benefit from the augmentation. In the extreme
case, our approach yields a 15.26% gain in the IoU score
(SBF, PSPNet [71]), whereas the most significant drop in
performance is 2.79% (HC, SegFormer [65]). For the BC
class, the mean and median increase over all baselines is
5.55% and 4.75%, respectively.

Remarkably, even for the overall best performing base-
line PFSegNet [34], our approach still yields significant im-
provements for all but one classes, with an increased IoU
score of up to 8.98% (basketball court). We conclude that
the observed improvements of leveraging our synthesized
data are homogeneous and consistent throughout all con-
sidered settings and for most individual classes.

We further provide an analysis of the impact of addi-
tional synthetic samples on rare classes, see Fig. 7. For each
of the 15 foreground classes, we consider the absolute im-
provement of the mean IoU score on PSPNet [71]. This is
contrasted with the relative class occurrence, defined as the
fraction of images that contain any such instances. We ob-
serve a negative Pearson correlation coefficient of —0.47,
which indicates that the generated samples help mitigate
class imbalances.

B. Super-resolution discussion

In Sec. 4.4, we devise a super-resolution approach that al-
lows us to upsample generated images to a resolution of
256 x 256. Specifically, we utilize a diffusion-based super-
resolution model Ggr that takes generated images with a
size of 128 x 128 as a conditional input to the denoising
U-Net. While it is conceivable to extend this approach to
even higher resolutions > 256, considered by some exist-
ing satellite segmentation baselines [34, 73], we leave such
investigations for future work due to the substantial compu-
tational demand of high-resolution diffusion models.

As a straightforward alternative to our super-resolution
approach, we employ DDPM [27] to directly generate sam-
ples with a spatial size of 256 x 256. The resulting accu-
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Figure 7. Class imbalance. We analyze the per-class IoU score for
the results from Tab. 2 in the main paper. Specifically, we contrast
the relative occurrence of the 15 foreground classes, with their ab-
solute improvement in the mean IoU score on PSPNet [71]. The
resulting negative correlation confirms that our approach implic-
itly mitigates class imbalances, since rare classes disproportion-
ally benefit from additional generated samples.

racies of both approaches on the iSAID dataset are sum-
marized in Tab. 4, considering two standard backbones
FPN [31] and SegFormer [65]. The experimental setting
is analogous to Tab. 2 in the main paper.

These results indicate that our super-resolution approach
yields more consistent results compared to the direct DDPM
generations. To investigate this effect, we additionally pro-
vide visualizations of the resulting pairs in Fig. 10. While
both approaches yield comparable generations in terms
of fine-scale details, the images and masks obtained with
DDPM-256 are less coherent in the overall semantic lay-
out. Moreover, the convergence behavior of DDPM-256 is
less stable, producing erroneous image contrasts and sat-
urations. While both approaches yield improvements for
FPN [31], the lack of semantic coherence slightly decreases
the performance of SegFormer [65]. Our super-resolution
strategy effectively decouples the challenges of creating se-
mantically consistent images through G and recovering fine-
scale details through Ggg, leading to a superior downstream
performance in Tab. 4.

C. Advanced data augmentation

In Tab. 1b of the main paper, we demonstrate consistent
quantitative improvements in downstream segmentation
tasks compared to existing generative approaches. Here, we



FPN SegFormer
IoU (1) FL(1) IToU() FI(D
No synthetic ~ 59.52  72.82 6095 74.18

DDPM-256 6030 7322  60.61  73.85
Ours 60.65 73.69 6213 75.10

Table 4. Super-resolution. We compare our super-resolution ap-
proach to directly generating synthetic samples with DDPM, anal-
ogous to our approach in Sec. 4.3. We find that DDPM exhibits
unstable training behaviour for resolutions H = W > 256 which
results in a suboptimal downstream segmentation performance on
iSAID. The obtained joint samples display notable artifacts, par-
ticularly in terms of the saturation and contrast of the generated
images, refer to Fig. 10 for a qualitative comparison.

No additional samples ‘ Ours  Cutout [18] CutMix [68] Copy-Paste [22]
50.25 | 5111 50.47 50.60 50.51

Table 5. Quantitative comparison of augmentation methods.
We compare our method to the recent augmentation techniques
Cutout [18], CutMix [68], and Copy-Paste [22]. Across all ex-
periments, we generate additional training pairs with a resampling
ratio of R = 1. The experimental setup is equivalent to the results
on iSAID reported in Fig. 5 of the main paper.

evaluate the effectiveness of our approach against state-of-
the-art augmentation techniques such as Cutout [18], Cut-
Mix [68], and Copy-Paste [22].

Cutout [18] applies regional dropout in the input space
for image classification. We adapt this to semantic seg-
mentation by masking out random squares from both the
image and its corresponding semantic mask. CutMix [68]
crops random regions from one image and pastes them
onto another image, along with the corresponding masks.
The instance segmentation augmentation approach Copy-
Paste [22] copies connected semantic regions from one im-
age to another. Compared to CutMix [68], such regions cor-
respond to object instances instead of squares.

We revisit the quantitative results from Fig. 5 of the main
paper, and report the resulting accuracies in Tab. 5. Specifi-
cally, we consider the iSAID dataset with a resampling ratio
of R = 1, and apply an FPN backbone. While all augmen-
tation techniques enhance the performance, our approach
yields the most significant quantitative improvements.

D. Additional qualitative

For a complete picture, we provide several additional qual-
itative samples of different settings. For once, we visual-
ize the joint denoising process proposed in our approach
in Fig. 8. We further show visualizations of generated sam-
ples on OpenEarthMap [64] in Fig. 9, analogous to Fig. 3
for iSAID and Fig. 4 for LoveDA in the main paper. The

semantic labels of OpenEarthMap are associated with land-
cover classes, comparable to LoveDA.

In Fig. 11 and Fig. 12, we visualize the predicted
semantic masks for iSAID and OpenEarthMap, respec-
tively. Compared to the two baselines SemGAN [32] and
SegDiff [1], our approach yields the most consistent results
— both in terms of accuracy and mask quality.

Finally, we provide 49 random samples from
LoveDA [60] in Fig. 13 for detailed insights into the
obtained samples quality of our generative approach.



per class IoU (1)

mloU (1) F1 (1) BG S ST BD TC BC  GTF B LV SV HC SP R SBF P H
PFSegNet + D 60.93 74.10 98.84 61.74 6321 7633 8425 4898 54.13 3495 61.66 4160 2652 5043 6795 66.11 8141 56.80
PFSegNet + DU D’ 63.71 7637 9893 6388 67.58 77.11 87.70 57.96 58.01 40.22 62.91 4470 27.63 5042 7028 69.59 8275 59.71
FarSeg + D 62.28 75.16 98.84 6245 68.63 76.76 86.15 57.14 5439 3895 61.49 41.08 2750 4555 71.53 7045 81.09 5453
FarSeg + DUD’ 62.95 7572 98.87 6233 68.16 7483 86.60 57.73 57.22 3856 6135 4020 30.10 4553 7423 72.69 81.69 57.09
SegFormer + D 60.95 74.18 98.83 6191 6358 7435 8472 5401 57.74 4037 5820 3432 3248 4227 6825 72.67 7853 52.83
SegFormer + D U D’ 62.13 7510 98.88 64.17 6486 7422 8586 58.76 58.01 40.19 59.53 3593 29.69 46.20 69.92 7273 79.89 55.21
FPN +D 59.52 72.82 98.78 58.66 63.72 7639 8497 5532 58.05 36.15 56.82 3440 2382 4452 63.60 7045 76.57 50.14
FPN+DUD’ 60.65 73.69 98.82 59.17 64.87 76.53 8597 5535 5828 36.71 57.96 3454 2364 46.66 69.79 71.34 77.70 53.05
PSPNet + D 48.95 63.13 9835 4633 4643 6827 7792 38.63 46.76 2145 4828 18.03 2250 3596 5580 5524 66.36 36.88
PSPNet+ DU D’ 56.54 70.16 98.60 51.12 59.33 7358 84.15 52.01 56.20 3244 52.01 2445 2640 4287 67.08 70.50 70.14 43.69

Table 6. Per-class segmentation scores on iSAID 256 x 256. We provide a detailed analysis of the per-class segmentation scores on
iSAID. Specifically, we report mean IoU scores for approaches tailored for high-resolution satellite imagery [34, 73] and the general-
purpose segmentation models SegFormer [65], FPN [31], and PSPNet [71]. Each model is trained on the combined dataset of original and
generated samples D U D’, and compared against models trained solely on the original data D. For a majority of classes, the synthesized
data yields marked improvements in performance. We abbreviate the 16 semantic classes with the following acronyms: background (BG),
ship (S), store tank (ST), baseball diamond (BD), tennis court (TC), basketball court (BC), ground track field (GTF), bridge (B), large
vehicle (LV), small vehicle (SV), helicopter (HC), swimming pool (SP), roundabout (R), soccer ball field (SBF), plane (P), harbour (H).
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Figure 8. Denoising process, qualitative. We provide a qualitative example of the coupled denoising proposed in our approach. Similar
to DDPM [27], the novel training samples (X}, y;) emerge through an iterative scheme, reversing the forward Gaussian noising steps.

Figure 9. Generated samples, OpenEarthMap [64]. We display several generated joint instances (x},y;) on OpenEarthMap [64],
obtained by the diffusion model G detailed in Sec. 4.3 of the main paper.
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Figure 10. Super-resolution comparison. We provide a qualitative comparison of image super-resolution to standard DDPM generations.
At resolutions > 256, DDPM exhibits unstable training behaviour, leading to severe artifacts — both in terms of the saturation and contrast
of obtained samples, as well as the overall semantic layout. In contrast, our super-resolution approach, outlined in Sec. 4.4 of the paper,
generates coherent and high-quality scenes (lower row).
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Figure 11. iSAID baseline comparison. We contrast the semantic masks obtained with our approach to our two considered baselines [1,
32]. These correspond to the results presented in Tab. 1b in the main paper. SemGAN is primarily designed for conventional segmentation
benchmarks such as CelebA [38], whereas the generalization to imbalanced earth observation datasets is limited. Like ours, SegDiff
yields high quality masks but individual regions are mislabeled more frequently (e.g. red marker), as indicated by the quantitative results
in Tab. 1b.
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Figure 12. OpenEarthMap baseline comparison. Analogously to Fig. 11, we show a number of qualitative comparisons of our approach
to our considered baselines [1, 32] on OpenEarthMap.
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Figure 13. LoveDA, qualitative. We provide 49 random samples generated on LoveDA [60], for an in-depth understanding of the quality
of obtained samples. As usual, we show pairs of synthesized images x and corresponding synthesized masks y.



