
NeuRAD: Neural Rendering for Autonomous Driving

Supplementary Material

In the supplementary material, we provide implementa-
tion details for our method and baselines, evaluation de-
tails, and additional results. In Appendix A, we describe
our network architecture more closely and provide hyper-
parameter values. In Appendix B, we provide details on
the experimental setting. Then, in Appendix C, we pro-
vide details on our baseline implementation. We closely
describe the process of inferring lidar rays that did not re-
turn in Appendix D. Next, we cover additional details of our
proposed rolling shutter modeling in Appendix E. Last, in
Appendix G, we showcase additional results and highlight
some limitations of our method.

A. Implementation details

Here we describe our model and training in more detail.
Learning: We train all parts of our model jointly for 20,000
iterations, using the Adam optimizer. In each iteration, we
randomly sample 16,384 lidar rays, and 40,960 camera rays,
the latter corresponding to 40 (32 × 32) patches. For most
parameters, we use a learning rate of 0.01, with a short
warmup of 500 steps. For the actor trajectory optimization
and the CNN decoder, we adopt a longer warmup of 2500
steps, and a lower learning rate of 0.001. If enabled, cam-
era optimization uses a learning rate of 0.0001, also with a
warmup of 2500. We use learning rate schedules that de-
cay the rate by an order of magnitude over the course of the
training.
Networks: As we primarily compare our method with
UniSim [13], we follow their network design to a large de-
gree. Our first (geo) MLP has one hidden layer, our second
(feature) MLP has two hidden layers, and the lidar decoder
also has two hidden layers. For details on the CNN de-
coder, we refer to Appendix C.2. All networks use a hidden
dimension of 32, which is also the dimensionality of the
intermediate NFF features.
Hashgrids: We use the efficient hashgrid implementation
from tiny-cuda-nn [7], with two separate hashgrids for the
static scene and the dynamic actors. We use a much larger
hash table for the static world, as actors only occupy a small
portion of the scene, see Tab. 5.
Proposal Sampling: First, we draw uniform samples ac-
cording to the power function P(0.1x,−1.0) [2], where we
have adjusted the parameters to better match our automotive
scenes. Next, we perform two rounds of proposal sampling,
represented by two separate density fields. Both fields use
our actor-aware hash encoding, but with smaller hash tables
and a feature dimension of one in the hash tables. Instead of
an MLP, we decode density with a single linear layer. The

proposal fields are supervised with the anti-aliased online
distillation approach proposed for ZipNeRF [2]. Addition-
ally, we supervise lidar rays directly with Ld and Lw.
NeuRAD-2x: We upscale NeuRAD in a straightforward
manner – by doubling the size of all hash tables, thereby ap-
proximately doubling the model’s parameter count. As this
model is primarily intended for long sequences and large
scenes, we also double the resolution of each level of the
static hashgrid. To accommodate the expanded model com-
plexity, we extend the training to 50,000 iterations and ad-
just the warm-up periods correspondingly. All other hy-
perparameters remain the same. We find that while further
scaling offers benefits in some cases, it leads to diminishing
returns in others.

B. Evaluation details

Here, we describe in detail the evaluation protocol of each
SoTA method that we have compared NeuRAD to.
Pandaset (UniSim): UniSim uses a simple evaluation
protocol, where the entire sequence is used, with every
other frame selected for evaluation and the remaining half
of the frames for training. The authors report numbers
for the front camera and the 360◦ lidar on the follow-
ing sequences: 001, 011, 016, 028, 053, 063,
084, 106, 123, 158. We call this protocol Panda
FC, and additionally report Panda 360 results, with all 6
cameras (and the 360◦ lidar). For the backward-facing cam-
era, we crop away 250 pixels from the bottom of the image,
as this mainly shows the trunk of the ego vehicle.
nuScenes (S-NeRF): S-Nerf uses four sequences for eval-
uation: 0164, 0209, 0359, 0916. The first 20 sam-
ples from each sequence are discarded, and the next 40 con-
secutive samples are considered for training and evaluation.
The remaining samples are also discarded. Out of the se-
lected samples, every fourth is used for evaluation and the
rest are used for training. We train and evaluate on all 6
cameras.
KITTI (MARS): MARS reports NVS quality on a single
sequence, 0006, on frames 5-260. We adopt their 50%-
protocol, where half of the frames are used for training, and
25% for evaluation. Following their implementation, we
adopt a repeating pattern where two consecutive frames are
used for training, one is discarded, and the fourth is used for
evaluation.
Argoverse 2 & ZOD: Here, we use a simple evaluation
protocol that is analogous to that used for PandaSet. We
select 10 diverse sequences for each dataset, and use each
sequence in its entirety, alternating frames for training

Table 5. Hyperparameters for NeuRAD.

Hyperparameter Value

N
eu

ra
lf

ea
tu

re
fie

ld

RGB upsampling factor 3
proposal samples 128, 64
SDF β 20.0 (learnable)
power function λ -1.0
power function scale 0.1
appearance embedding dim 16
hidden dim (all networks) 32
NFF feature dim 32

H
as

hg
ri

ds

hashgrid features per level 4
actor hashgrid levels 4
actor hashgrid size 215

static hashgrid levels 8
static hashgrid size 222

proposal features per level 1
proposal static hashgrid size 220

proposal actor hashgrid size 215

L
os

s
w

ei
gh

ts

λrgb 5.0
λvgg 5e-2
λint 1e-1
λd 1e-2
λw 1e-2
λpd 1e-2
proposal λd 1e-3
proposal λw 1e-3
interlevel loss multiplier 1e-3

L
ea

rn
in

g
ra

te
s

actor trajectory lr 1e-3
cnn lr 1e-3
camera optimization lr 1e-4
remaining parameters lr 1e-2

and evaluation. For Argoverse, we use all surround
cameras and both lidars on the following sequences:
05fa5048-f355-3274-b565-c0ddc547b315,
0b86f508-5df9-4a46-bc59-5b9536dbde9f,
185d3943-dd15-397a-8b2e-69cd86628fb7,
25e5c600-36fe-3245-9cc0-40ef91620c22,
27be7d34-ecb4-377b-8477-ccfd7cf4d0bc,
280269f9-6111-311d-b351-ce9f63f88c81,
2f2321d2-7912-3567-a789-25e46a145bda,
3bffdcff-c3a7-38b6-a0f2-64196d130958,
44adf4c4-6064-362f-94d3-323ed42cfda9,
5589de60-1727-3e3f-9423-33437fc5da4b.
For ZOD, we use the front-facing camera and all three
lidars on the following sequences: 000784, 000005,
000030, 000221, 000231, 000387, 001186,
000657, 000581, 000619, 000546, 000244,
000811. As ZOD does not provide sequence annotations,
we use a lidar-based object detector and create tracklets

using ImmortalTracker [9].
Ablation Dataset: We perform all ablations on
20 sequences, four from each dataset considered
above. We use sequences 001, 011, 063, 106
for PandaSet, 0164, 0209, 0359, 0916 for
nuScenes, 0006, 0010, 0000, 0002 for KITTI,
000030, 000221, 000657, 000005 for ZOD, and
280269f9-6111-311d-b351-ce9f63f88c81,
185d3943-dd15-397a-8b2e-69cd86628fb7,
05fa5048-f355-3274-b565-c0ddc547b315,
0b86f508-5df9-4a46-bc59-5b9536dbde9f for
Argoverse 2. Here, we no longer adopt the dataset-specific
evaluation protocols corresponding to each SoTA method.
Instead, we evaluate on the full sequences, on all available
sensors, alternating frames for training and evaluation.
The exception is nuScenes, where we find the provided
poses to be too poor to train on the full sequences. If we
optimize poses during training, we get qualitatively good
results, and strong FID scores, but poor reconstruction
scores due to misalignment between the learned poses and
the evaluation poses, see Appendix G for a more detailed
exposition. Therefore, we re-use S-NeRF’s shortened
evaluation protocol, where this problem is mostly avoided,
and leave the problem of proper evaluation on nuScenes for
future work.

C. UniSim implementation details

UniSim [13] is a neural closed-loop sensor simulator. It
features realistic renderings and imposes few assumptions
about available supervision, i.e., it only requires camera
images, lidar point clouds, sensor poses, and 3D bound-
ing boxes with tracklets for dynamic actors. These char-
acteristics make UniSim a suitable baseline, as it is easy to
apply to new autonomous driving datasets. However, the
code is closed-source and there are no unofficial implemen-
tations either. Therefore, we opt to reimplement UniSim,
and as our model, we do so in Nerfstudio [8]. As the
UniSim main article does not specify many model specifics,
we rely on the supplementary material available through
IEEE Xplore1. Nonetheless, some details remain undis-
closed, and we have tuned these hyperparameters to match
the reported performance on the 10 selected PandaSet [12]
sequences. We describe the design choices and known dif-
ferences below.

C.1. Data processing

Occupancy grid dilation: UniSim uses uniform sampling
to generate queries for its neural feature field. Inside dy-
namic actors’ bounding boxes, the step size is 5 cm and
inside the static field, the step size is 20 cm. To remove

1https://ieeexplore.ieee.org/document/10204923/
media

samples far from any surfaces and avoid unnecessary pro-
cessing, UniSim deploys an occupancy grid. The grid, of
cell size 0.5m, is initialized using accumulated lidar point
clouds where the points inside the dynamic actors have been
removed. A grid cell is marked occupied if at least one li-
dar point falls inside of it. Further, the occupancy grid is
dilated to account for point cloud sparseness. We set the
dilation factor to two. We find the performance to be insen-
sitive to the selection of dilation factor, where larger values
mainly increase the number of processed samples.
Sky sampling: UniSim uses 16 samples for the sky field for
each ray. We sample these linearly in disparity (one over
distance to the sensor origin) between the end of the static
field and 3 km away.
Sample merging: Each ray can generate a different number
of sample points. To combine the results from the static, dy-
namic, and sky fields, we sort samples along the ray based
on their distance and rely on nerfacc [5] for efficient render-
ing.

C.2. Model components

CNN: The CNN used for upsampling consists of four resid-
ual blocks with 32 channels. Further, a convolutional layer
is applied at the beginning of the CNN to convert input fea-
tures to 32 channels, and a second convolutional layer is
applied to predict the RGB values. For both layers, we
use kernel size one with no padding. We set the residual
blocks to consist of convolution, batch norm, ReLU, convo-
lution, batch norm, and skip connection to the input. The
convolutional layers in the residual block use a kernel size
of seven, with a padding of three. Between the second and
third residual blocks, we apply a transposed convolution to
upsample the feature map. We set the kernel size and stride
to the upsample factor. The upsample factor in turn is set
to three. Although we follow the specifications of UniSim,
we find our implementation to have fewer parameters than
what they report (0.7M compared to 1.7M). Likely reasons
are interpretations of residual block design (only kernel size
and padding a specified), kernel size for the first and last
convolution layer, and the design of the upsampling layer.
Nonetheless, we found that increasing the CNN parameter
count only increased run-time without performance gains.
GAN: UniSim deploys an adversarial training scheme,
where a CNN discriminator is trained to distinguish be-
tween rendered image patches at observed and unobserved
viewpoints, where unobserved viewpoints refer to jittering
the camera origins. The neural feature field and upsampling
CNN are then trained to improve the photorealism at unob-
served viewpoints. UniSim results show adversarial train-
ing to hurt novel view synthesis metrics (PSNR, LPIPS,
SSIM), but boost FID performance for the lane-shift setting.

Unfortunately, the discriminator design is only briefly
described in terms of a parameter count, resulting in a large

potential design space. As training is done on patches, we
opted for a PatchGAN [4] discriminator design inspired by
pix2pixhd [10]. However, we found it difficult to get con-
sistent performance increases and hence removed the adver-
sarial training from our reimplementation. This is likely the
reason for our reimplementation to perform slightly worse
than the original results in terms of FID for lane shift. How-
ever, using adversarial training does not seem to be neces-
sary in general for achieving low FID scores. In Tab. 3, we
see NeuRAD, which does not use any GAN training, out-
performing the original UniSim method, which does rely
on adversarial supervision.
SDF to occupancy mapping: UniSim approximates the
mapping from signed distance s to occupancy α as

α =
1

1 + eβs
, (1)

where β is a hyperparameter. As β is unspecified, we fol-
low [14], which uses a similar formulation for neural ren-
dering in an automotive setting. Specifically, we initialize β
to 20.0 and make it a learnable parameter to avoid sensitiv-
ity to its specific value.

C.3. Supervision

Loss hyperparameters: We set λrgb = 1.0 and λvgg =
0.05. All other learning weights are given in UniSim’s sup-
plementary material and hence are used as is.
Regularization loss: For lidar rays, UniSim uses two regu-
larizing losses. The first decreases the weights for samples
far from any surface and the second encourages the signed
distance function to satisfy the eikonal equation close to any
surface

Lreg =
1

N

N∑
i=1

 ∑
γi,j>ϵ

||wij ||2

+
∑

γi,j<ϵ

(||∇s(xij)|| − 1)2

 . (2)

Here, i is the ray index, j is the index for a sample xij along
the ray, γi,j denotes the distance between the sample and the
corresponding lidar observation, i.e., γi,j = |τij −Dgt

i |. We
set ϵ = 0.1.

Furthermore, we rely on tiny-cuda-nn [7] for fast imple-
mentations of the hash grid and MLPs. However, the frame-
work does not support second-order derivatives for MLPs,
and hence cannot be used when backpropagating through
the SDF gradient ∇s(xij). Hence, instead of analytical gra-
dients, we use numerical ones. Let

k1

k2

k3

k4

 =


1 −1 −1
−1 −1 1
−1 1 −1
1 1 1

 . (3)

To find ∇s(xij), we query the neural feature field at four
locations xij + δkl, l = 1, 2, 3, 4 where δ = 0.01√

3
, result-

ing in four signed distance values s1, s2, s3, s4. Finally, we
calculate

∇s(xij) =
1

4δ

∑
l

slkl. (4)

The use of numerical gradients instead of analytical ones
has been shown to be beneficial for learning signed distance
functions for neural rendering [6].
Perceptual loss: Just like NeuRAD, UniSim uses a percep-
tual loss where VGG features of a ground truth image patch
are compared to a rendered patch. While multiple formu-
lations of such a loss exist, we opted for the one used in
pix2pixHD [10] for both methods.

D. Inferring ray drop

The inclusion of dropped lidar rays during supervision in-
creases the fidelity of sensor renderings in all aspects, as
shown in Tab. 4. The process of inferring which lidar
beams are missing in a point cloud differs somewhat be-
tween datasets, as they contain different types of informa-
tion. However, in general, the process consists of three
steps: removal of ego-motion compensation, diode index
assignment, and point infilling. In Fig. 5, we show a lidar
scan from PandaSet [12] (sequence 106) at different stages.
Removal of ego-motion compensation: To figure out
which points are missing in a single sweep, we want to ex-
press their location in terms of azimuth (horizontal angle),
elevation (vertical angle), and range at the time the beam
was shot from the sensor. However, for all datasets, the pro-
vided points have been ego-motion compensated, i.e., their
Cartesian coordinates are expressed in a common coordi-
nate frame. Simply converting them to spherical coordi-
nates is therefore not possible until the ego-motion com-
pensation is removed.

For each 3D lidar point (x, y, z) captured at time t we
first project the point into world coordinates using its as-
signed sensor pose. For PandaSet [12], this first step is
omitted, as points are provided in world coordinates. We
then find the pose of the lidar sensor at time t by linearly
interpolating existing sensor poses. For rotation, we use a
quaternion representation and spherical linear interpolation
(slerp). Given the sensor pose at t, we project the 3D point
back into the sensor frame. We note that this process is sus-
ceptible to noise, since lidar poses are typically provided at
a low frequency 10Hz-20Hz. We find elevation ϕ, azimuth
θ and range r as

r =
√
x2 + y2 + z2, (5)

ϕ = arcsin (z/r), (6)
θ = arctan (y/x). (7)

(a) Before removing ego-motion compensation.

(b) After removing ego-motion compensation.

(c) After removing ego-motion compensation and adding missing points.

Figure 5. Lidar scans in spherical coordinates at different stages
during inference of missing lidar rays. The color indicates range,
where missing points have been set to a large distance for visual-
ization purposes. Note that we do not add missing points for the
two bottom rows, as they typically hit the ego vehicle.

Diode index assigment: All datasets considered in this
work use spinning lidars, where a set of diodes are rotated
360◦ around the sensor and each diode is mounted at a fixed
elevation angle. Typically, all diodes (or channels) trans-
mit the same number of beams each revolution, where the
number depends on the sensors’ horizontal resolution. To
use this information for inferring missing rays, we need to
assign each return to its diode index. For most datasets con-
sidered here [1, 3, 11], this information is present in the raw

data. However, for the other [12], we must predict diode
assignment based on the points’ elevation. As there is no
ground truth available for this information, we use qualita-
tive inspections to verify the correctness of the procedures
outlined below.

PandaSet uses a spinning lidar with a non-linear eleva-
tion distribution for the diodes, i.e., diodes are not spaced
equally along the elevation axis. Instead, a few channels,
the ones with the largest and smallest elevations, have a
longer distance from their closest diode neighbor. Points
corresponding to these channels are easily found by using
sensor specifications. The remaining diodes use equal spac-
ing, but inaccuracies in the removal of ego-motion compen-
sation result in many wrongful diode assignments if sensor
specifications are trusted blindly. Thus, we devise a clus-
tering algorithm for inferring diode indices for points orig-
inating from diodes within the equal elevation distribution
range.

The following is done separately for each lidar scan.
First, we define the expected upper and lower bounds for
elevation for each diode. These decision boundaries are
spaced equally between the lowest and highest observed el-
evations based on the number of diodes. Then, we use his-
togram binning to cluster points based on their elevation.
We use 2,000 bins, and the resulting bin widths are smaller
than the spacing between diodes. Next, we identify consec-
utive empty bins. For any expected decision boundary that
falls into an empty bin, we mark it as a true decision bound-
ary. The same is true if the expected decision boundary is
within 0.03◦ of an empty bin. Following this, if the num-
ber of true decision boundaries is smaller than the number
of expected decision boundaries, we insert new boundaries
between existing ones. Specifically, for the two boundaries
with the largest distance between them, we insert as many
boundaries as the vertical resolution dictates, but at least
one, and at most as many decision boundaries that are miss-
ing. This insertion of boundaries is repeated until the re-
quired number of boundaries is reached.
Point infilling: After removing ego-motion compensation,
transforming the points to spherical coordinates (elevation,
azimuth, range), and finding their diode index, we can infer
which laser rays did not return any points. Separately, for
each diode, we define azimuth bins, spanning 0◦ to 360◦

with a bin width equal to the horizontal resolution of the
lidar. If a returning point falls into a bin, we mark it as
returned. For the remaining bins, we calculate their azimuth
and elevation by linear interpolation.

E. Modeling rolling shutter
As shown in Fig. 3 and Tab. 4, modeling the rolling shutter
improves generated renderings, especially at high veloci-
ties. Fig. 6 further shows the effects of rolling shutter on
an ego-motion compensated lidar point cloud. To capture

Figure 6. Bird’s-eye-view of ego-motion compensated point
cloud. Cuts in the circular patterns on the ground indicate the
distance traveled by the ego-vehicle during one lidar revolution.
Further, the cut through the car shows the importance of interpo-
lating actor poses to the time when each lidar ray was shot.

these effects, we assign each ray an individual timestamp.
For lidar, these timestamps are typically available in the raw
data, else we approximate them based on the rays’ azimuth
and the sensors’ RPM. For cameras, individual timestamps
are not available in the data. Instead, we manually approx-
imate the shutter time and offset each image row accord-
ingly. Given the individual timestamps, we linearly inter-
polate sensor poses to these times, effectively shifting the
origin of the rays. Moreover, we model that dynamic actors
may move during the capture time. Given the timestamps,
we linearly interpolate their poses to the said time before
transforming ray samples to the actors’ coordinate systems.

F. Simulation gap
In the following, we show results for the simulation gap.
To study the real2sim gap, we train the 3D object detector
BEVFormer on real images from PandaSet-360 and evalu-
ate its object detection performance on synthesized images
from the ten sequences used for NVS (not part of the train-
ing set for BEVFormer). For BEVFormer, we use the offi-
cial implementation2 and the small version of the model. In
Tab. 6 we see that the detector achieves similar validation
performance for the real images and the synthesized images
from NeuRAD. UniSim, struggling in the 360 setting, ex-
hibits a larger gap.

Further, for a more general and dataset-agnostic evalu-
ation, we use a zero-shot depth estimator, DepthAnything

2https://github.com/fundamentalvision/BEVFormer

UniSim

NeuRAD

UniSim

NeuRAD

UniSim

NeuRAD

Figure 7. Qualitative comparison between NeuRAD and UniSim across three Pandaset sequences (016, 028, 158). Displayed are the front
left, front center, and front right camera perspectives. NeuRAD overall captures more details than UniSim, although the difference is not
dramatic for the front camera. However, as highlighted by red boxes, NeuRAD clearly outperforms UniSim for side cameras.

Table 6. Real2Sim gap: BEVFormer (mAP) on different images.

Data source NeuRAD UniSim∗ Real
mAP 32.0 30.1 32.4

Table 7. Real2Sim gap: DepthAnything relative depth (δ1 ↑).

PandaFC Panda360 AV2 ZOD NuScenes KITTI
UniSim∗ 0.927 0.872 0.860 0.901 - -
Neurad 0.968 0.944 0.928 0.958 0.894 0.947

(DA). We measure the agreement between depth estima-
tions on synthesized and real images using the standard δ1
metric. Tab. 7 shows consistent depth estimations, indicat-
ing a low domain gap across several datasets. For reference,
DA reports δ1=0.947 when comparing against ground truth
depth. We find these studies to give valuable insights and
will include them in the manuscript.

G. Additional results
In the following, we provide additional results and insights,
as well as some failure cases of our method.
Comparison with UniSim: We begin with a direct qual-
itative comparison between NeuRAD and UniSim [13] as
depicted in Fig. 7. For the front camera, the distinction in
quality is subtle but observable; NeuRAD demonstrates su-
perior image clarity, exhibiting notably less noise and arti-
fact presence. In contrast, the disparity in quality is more
pronounced with the side cameras. Here, NeuRAD’s output
markedly surpasses UniSim, which is particularly evident
in the highlighted areas where UniSim exhibits significant
motion blur and visual distortion that NeuRAD effectively
mitigates.
Proposal sampling: To efficiently allocate samples along
each ray, we use two rounds of proposal sampling. For com-
parison, UniSim instead samples along the rays uniformly
and relies on a lidar-based occupancy grid to prune sam-
ples far from the detected surfaces. Although the occupancy
grid is fast to evaluate, it has two shortcomings. First, the
method struggles with surfaces far from any lidar points. In
the case of UniSim, the RGB values must instead be cap-
tured by the sky field, effectively placing the geometry far
away regardless of its true position. The upper row of Fig. 8
shows an example of this, where a utility pole becomes very
blurry without proposal sampling. Second, uniform sam-
pling is not well suited for recovering thin structures or fine
details of close-up surfaces. Doing so would require draw-
ing samples very densely, which, instead, scales poorly with
computational requirements. We examine both failure cases
in Fig. 8, with thin power lines in the upper row and close-
ups of vehicles in the lower row.
Sensor embedding: As described in Sec. 3.3, and shown in
Tab. 4, the effect of different camera settings for different
sensors in the same scene has a significant impact on re-

construction results. Fig. 9 shows qualitative results of this
effect. Ignoring this effect causes shifts in color and light-
ing, often at the edge of images where the overlap between
sensors is bigger, and is clearly visible in the second column
of Fig. 9. Including sensor embeddings allows the model to
account for differences in the sensors (e.g., different expo-
sure), resulting in more accurate reconstructions.
Camera optimization: Neural rendering is reliant on ac-
cess to accurate sensor poses. For instance, a small trans-
lation or rotation of a camera in world coordinates might
translate to a small shift in the image plane as well, but this
can drastically change each pixels’ value.

In this work, we rely on sensor poses provided in the
datasets, which typically are the result of IMU and GPS
sensor fusion, SLAM, or a combination of both. As a re-
sult, sensor poses are often accurate to centimeter precision.
While nuScenes [3] follows this example, the dataset does
not provide height, roll, or pitch information, as this infor-
mation has been discarded. We found this to be a limiting
factor for the performance of NeuRAD, especially for se-
quences where the ego vehicle does not traverse a simple,
flat surface. To address this, we instead enable optimization
of the sensor poses, similar to how we optimize the poses of
dynamic actors, see Sec. 3.3.

Applying sensor pose optimization qualitatively results
in sharp renderings and quantitatively yields strong FID
scores, see Tab. 3. However, we found novel view synthe-
sis performance – in terms of PSNR, LPIPS and SSIM –
to drop sharply. We find that the reason is that the sen-
sor pose optimization creates an inconsistency between the
world frame of the training data and the validation poses.
Due to noisy validation poses, we render the world from a
slightly incorrect position, resulting in large errors for the
NVS per-pixel metrics. We illustrate this in Fig. 10, where
the image from the training without sensor pose optimiza-
tion is more blurry, but receives higher PSNR scores than
the one with pose optimization.

We explored multiple methods for circumventing these
issues, including separate training runs for finding accu-
rate training and validation poses, or optimizing only the
poses of validation images post-training. However, to avoid
giving NeuRAD an unfair advantage over prior work, we
simply disabled sensor pose optimization for our method.
Nonetheless, we hope to study the issue of NVS evaluation
when accurate poses are not available for neither training or
validation in future work.

G.1. Limitations

In this work, we have proposed multiple modeling strate-
gies for capturing important phenomena present in automo-
tive data. Nonetheless, NeuRAD builds upon a set of as-
sumptions, which when violated, result in suboptimal per-
formance. Here, we cover some of these failure cases.

Original Occupancy Proposal

Original Occupancy Proposal

Figure 8. Two failure-cases that demonstrate the importance of proposal sampling over occupancy-based sampling: regions without lidar
occupancy that are improperly modeled by sky field (upper), and nearby object that require extremely dense sampling (lower).

Figure 9. Effect of sensor embedding. The second column shows rendered images from the model trained without sensor embeddings,
where a clear degradation is visible due to the shift in appearance (e.g., different exposure) between different sensors. As can be seen in
the third column, this effect is remedied by including sensor embeddings.

Without camera optimization, PSNR: 28.0 With camera optimization:, PSNR: 22.3Original

Without camera optimization, PSNR: 28.0

With camera optimization:, PSNR: 22.3

Original

Figure 10. Effect of camera optimization on nuScenes. Despite clearly sharper image quality, we get drastically reduced PSNR scores
when using camera optimization. This is due to the misalignment between the learned poses and the evaluation poses. This can be seen in
the far left of the image, where the image with camera optimization displays less of a window.

Original Reconstructed

Figure 11. Failed reconstruction of deformable actors. The assumption that all actors are rigid is invalid for pedestrians and the like, leading
to blurry reconstruction as seen here.

Deformable dynamic actors: When modeling dynamic ac-
tors, we make one very strong assumption — that the dy-
namics of an actor can be described by a single rigid trans-
form. This is a reasonable approximation for many types
of actors, such as cars, trucks, and to a lesser degree even
cyclists. However, pedestrians break this assumption en-
tirely, leading to very blurry reconstructions, as can be seen
in Fig. 11.
Night scenes: Modelling night scenes with NeRF-like
methods can be quite tricky for several reasons. First, night
images contain a lot more measurement noise, which hin-
ders the optimization as it is not really related to the un-
derlying geometry. Second, long exposure times, coupled
with the motion of both the sensor and other actors, lead to
blurriness and can even make thin objects appear transpar-
ent. Third, strong lights produce blooming and lens-flare,
which have to be explained by placing large blobs of den-
sity where there should not be any. Finally, dynamic actors,
including the ego-vehicle, frequently produce their own il-
lumination, such as from headlights. While static illumina-
tion can usually be explained as an effect dependent on the
viewing direction, this kind of time-varying illumination is
not modelled at all.
Time-dependent object appearance: In order to build
a fully-useable closed-loop simulation we need to model
brake lights, turning indicators, traffic lights, etc. While
the problem is similar to that of deformable actors, it dif-

fers in some ways. First, we do not require the geometry
to vary over time, potentially simplifying the problem. Sec-
ond, we can probably treat these appearances as a set of
discrete states. Third, the current set of perception annota-
tions/detections might not cover all necessary regions where
this effect is present. For instance, most datasets do not ex-
plicitly annotate traffic lights. Finally, we require full con-
trol and editability for this effect, to the degree that we can
enable brake lights for a car that never braked. For general
deformable actors, we might be satisfied with reconstruct-
ing the observed deformation, without being able to signifi-
cantly modify it.

References
[1] Mina Alibeigi, William Ljungbergh, Adam Tonderski, Georg

Hess, Adam Lilja, Carl Lindström, Daria Motorniuk, Jun-
sheng Fu, Jenny Widahl, and Christoffer Petersson. Zenseact
open dataset: A large-scale and diverse multimodal dataset
for autonomous driving. In Int. Conf. Comput. Vis., pages
20178–20188, 2023. 4

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. In Int. Conf. Comput. Vis., pages
19697–19705, 2023. 1

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-

Original Reconstructed Depth

Original Reconstructed Depth

Figure 12. Novel view synthesis at night is challenging. For instance, strong lights can produce flares in the camera lens. These are hard to
model with the standard NeRF rendering equations, as it requires the network to place density around the lights. Further, longer exposure
times at night lead to dark, thin objects appearing semi-opaque, obscuring the learned scene geometry. Last, moving vehicles, including
the ego-vehicle, illuminate the scene, resulting in a change of color over time for certain static parts of the scene. For instance, the road
contains artifacts due to illumination from the ego-vehicle headlights.

Original

Original

Original

Rendered

Rendered

Rendered

Figure 13. NeuRAD assumes all radiance to be static over time, even for dynamic actors. Thus, our method cannot express changes in
light conditions, such as brake lights highlighted here. Interestingly, the model compensates by making the brake lights a function of the
viewing angle instead, as the two are correlated in this particular scene.

modal dataset for autonomous driving. In IEEE Conf. Com-
put. Vis. Pattern Recog., pages 11621–11631, 2020. 4, 7

[4] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 3

[5] Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo
Kanazawa. Nerfacc: Efficient sampling accelerates nerfs.
arXiv preprint arXiv:2305.04966, 2023. 3

[6] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Tay-
lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.
Neuralangelo: High-fidelity neural surface reconstruction. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 8456–8465,
2023. 4

[7] Thomas Müller. tiny-cuda-nn, 2021. 1, 3
[8] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,

Brent Yi, Terrance Wang, Alexander Kristoffersen, Jake
Austin, Kamyar Salahi, Abhik Ahuja, et al. Nerfstudio: A
modular framework for neural radiance field development.
In ACM SIGGRAPH 2023 Conference Proceedings, pages
1–12, 2023. 2

[9] Qitai Wang, Yuntao Chen, Ziqi Pang, Naiyan Wang, and
Zhaoxiang Zhang. Immortal tracker: Tracklet never dies.
arXiv preprint arXiv:2111.13672, 2021. 2

[10] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798–8807, 2018. 3, 4

[11] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lam-
bert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Rat-
nesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes,
Deva Ramanan, Peter Carr, and James Hays. Argoverse 2:
Next generation datasets for self-driving perception and fore-
casting. In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks (NeurIPS
Datasets and Benchmarks 2021), 2021. 4

[12] Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang,
Xiaolin Chai, Judy Jiao, Zesong Li, Jian Wu, Kai Sun, Kun
Jiang, Yunlong Wang, and Diange Yang. Pandaset: Ad-
vanced sensor suite dataset for autonomous driving. In 2021
IEEE International Intelligent Transportation Systems Con-
ference (ITSC), pages 3095–3101, 2021. 2, 4, 5

[13] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Mani-
vasagam, Wei-Chiu Ma, Anqi Joyce Yang, and Raquel Ur-
tasun. Unisim: A neural closed-loop sensor simulator. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 1389–1399,
2023. 1, 2, 7

[14] Ze Yang, Sivabalan Manivasagam, Yun Chen, Jingkang
Wang, Rui Hu, and Raquel Urtasun. Reconstructing objects
in-the-wild for realistic sensor simulation. In 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 11661–11668, 2023. 3

