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A. Experiment Details

Hyperparameters. In this work, we adopt the same set
of hyperparameters as LLaVA [31] and LLaVA-1.5 [30].
We use Vicuna-13b-v1.3 [69] in LLaVA experiments and
Vicuna-13b-v1.5 [69] in LLaVA-1.5 experiments. We show
the training hyperparameters for LLaVA and LLaVA-1.5
experiments in Table 4. All experiments are conducted us-
ing a maximum of 8 Nvidia A100 GPUs.

Hyperparameter
LLaVA LLaVA-1.5

Stage 1 Stage 2 Stage 1 Stage 2

batch size 128 128 256 128
lr 1e-3 2e-5 2e-3 2e-5
lr schedule decay cosine cosine cosine cosine
lr warmup ratio 0.03 0.03 0.03 0.03
weight decay 0 0 0 0
epoch 1 3 1 1
optimizer AdamW [33]
DeepSpeed stage 2 3 2 3

Table 4. Hyperparameters for MoF training on LLaVA and
LLaVA-1.5.

Pretrain Datasets. We use the same dataset for both
LLaVA and LLaVA-1.5 experiments. For LLaVA ex-
periments, stage 1 uses CC595k [50] and stage 2 uses
LLaVA 158k [31] instruction data; For LLaVA-1.5 exper-
iments, stage 1 uses CC595k [50] and stage 2 uses DataMix
665k [1, 15, 21, 23, 24, 31, 34, 35, 38, 49, 51] proposed in
Liu et al. [30].

B. MMVP Benchmark

We provide more details on the MMVP benchmark.

B.1. Details of evaluating SOTA models

We access GPT-4V through ChatGPT in October and
November 2023. We also evaluate Gemini-Pro through Ver-
tex AI API in December 2023. We use the official check-

points for InstructBLIP [8]. We access mini-GPT4 [71],1

LLaVA and LLaVA-1.5 [31] through their playgrounds. We
test Bard [13] using the official website in September and
October 2023. Moreover, we test new-Bing [37] through
new-Bing chat creative mode and GPT-4V [40] in Septem-
ber 2023.

B.2. Questions in MMVP Benchmark

We present more examples in MMVP at the end in Fig-
ures 10, 11, 12.

B.3. Ablation Studies

To further verify that MLLMs make mistakes in MMVP due
to their incapable visual grounding instead of hallucination
in the language model [20]. We conduct additional ablation
experiments on the format and notations of VQA questions
and options in MMVP. We choose GPT-4V to do these ex-
periments, as it is currently the best model.

Swapping options The first experiment swaps the two
options in the MMVP benchmark. For example, we change
the question from “Are the butterfly’s wings closer to being
open or closed? (a) Open (b) Closed” to “Are the butterfly’s
wings closer to being open or closed? (a) Closed (b) Open”.

Empirically, we find that GPT-4V obtains a 40.3% ac-
curacy on the option swapping in our study, as opposed to
the original 38.7%. We observe that a few questions are
answered differently, while the majority remain the same.
This further suggests that the visual incapabilities are in the
vision encoder rather than in alignment or the LLMs.

Changing notations in the options We conducted an ab-
lation study to assess the impact of altering notations. For
example, we changed “(a) Closed (b) Open” to “(1) Closed
(2) Open”. The results are comparable to the original find-
ings, achieving a performance of 37.3%, closely matching
the original 38.7%. The study further suggests that the core
challenge in MLLMs is their inherent visual incapability,
rather than hallucinations in the language model.

B.4. Human Study Details

In this study, we ask four participants to volunteer in our
study. An example user interface for labeling is shown in
Figure 8. We collect their responses and calculate the aver-
age score as the human-level performance.

C. CLIP-MLLM Failure Correlation
Correlation between CLIP and MLLM models. We
compute the Pearson Correlation between the CLIP model

1To circumvent response hallucination in mini-GPT4 we prefix our
questions with “Please only choose an option to answer the question below
without explanation: ”



Questionnaire

Progress:

6/300

Can you see the key "Z" in the image?

 Yes
 No

 This question is not good
 Answers are too ambiguous

Back Next

Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.

LLaVA-1.5 InstructBLIP Bard Gemini GPT-4

Correlation 0.87 0.71 0.79 0.72 0.31

Table 5. Pearson Correlation between the CLIP model and
MLLMs. Open-source models that explicitly use CLIP-based
models are highlighted in gray.

and MLLMs and show results in Table 5. Notably, both
open-source models – LLaVA and InstructBLIP – exhibit
remarkably high Pearson Correlation, exceeding 0.7. This
finding indicates a strong correlation between the errors
made by the CLIP model and those made by MLLMs. Bard
also displays a very high correlation. This suggests that
some of the most advanced closed-source models are also
affected by the visual limitations in the CLIP models.

Correlation between ImageNet-1k and MMVP perfor-
mance. We plot the ImageNet-1k Zero-shot accuracy
against MMVP-VLM average performance in Figure 9. For
models with ImageNet-1k Zero-shot accuracy below 80,
a higher Zero-shot accuracy tends to indicate improved
MMVP performance. However, in models with superior
ImageNet-1k Zero-shot performance, this trend does not
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Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

necessarily hold for MMVP-VLM accuracy. This distinc-
tion accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orienta-
tion – aspects that are pivotal for downstream tasks and go
beyond what is captured by ImageNet accuracy alone.



D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that
pose challenges to all CLIP-based models.
• ☼ Orientation and Direction: Questions about the di-

rection something is facing or moving, such as the direc-
tion the dog or duck is facing, or the orientation of the
school bus.

• Û Presence of Specific Features: Questions that focus
on the existence or non-existence of certain elements or
features in the image.

• L State and Condition: Questions that pertain to the
state or condition of an object, such as whether a flag is
blowing in the wind or if the ground is wet.

• � Quantity and Count: Questions about the number of
objects or features present in the image.

• , Positional and Relational Context: This aspect refers
to the model’s ability to understand the position and rela-
tionship of objects or elements within an image in relation
to each other and their surroundings.

• h Color and Appearance: Questions regarding the
color of certain objects or elements.

• Ô Structural and Physical Characteristics: This cat-
egory involves the model’s ability to identify and analyze
the physical attributes and structural features of objects in
an image.

• k Text: Questions related to text or symbols present in
the image.

• � Viewpoint and Perspective: Questions concerning
the perspective from which the photo was taken.

E. More Benchmark Results
E.1. Different vision-only backbones

Here, we conduct extra experiments to study MoF involv-
ing MAE [18] or MoCoV3 [17] instead of DINOv2; See
Table 6. In Table 6, we observe that with MAE/MoCov3,
there is a consistent improvement in visual grounding abil-
ity, as shown in the MMVP and POPE benchmarks.

method SSL Model res #tokens MMVP POPE

LLaVA1.5 None 3362 576 24.7 85.9
LLaVA1.5 + I-MoF MoCov3 2242 512 26.7 (+2.0) 86.1
LLaVA1.5 + I-MoF MAE 2242 512 27.3 (+2.6) 86.1
LLaVA1.5 + I-MoF DINOv2 2242 512 28.0 (+3.3) 86.3

Table 6. Results of Interleaved MoF with different vision-only SSL model

E.2. Scaling up to larger resolution

We conduct additional experiments on Interleaved-MoF
that further scale up the resolution to 336 and evaluate on
more benchmarks. The summarized results in Table 7 reveal
that Interleaved-MoF achieves comparable performance on

most benchmarks while demonstrating improvements in
benchmarks focused on visual grounding. We also observe
that MMVP are more sensitive to the model’s visual capa-
bilities, underscoring the significance of our benchmark in
assessing visual proficiency.



method res #tokens MMVP LLVB LLVW MMB VQAT POPE VQAV2 MM-V

LLaVA1.5 3362 576 24.7 84.7 70.7 67.7 61.3 85.9 80.0 35.4
LLaVA1.5 + I-MoF 2242 512 28.0 82.7 73.3 61.6 55.3 86.3 77.3 33.5
LLaVA1.5 + I-MoF 3362 1152 31.3 81.8 73.3 65.4 58.7 86.7 79.3 34.6

Table 7. Comparison with LLaVA-1.5 on 6 more benchmarks. Interleaved-MoF LLaVA-1.5 obtains performance on par with the
original method while showing improvements on benchmarks evaluating visual grounding. Benchmark names are abbreviated due to
space limits. LLVB: LLaVA Benchmark [31]; LLVW: LLaVA-In-the-Wild [30]; MMB: MMBench [32]; VQAT: TextVQA[52]; POPE:
POPE [27]; VQAV2: VQA-v2 [15]; MM-V: MM-Vet [64].



Can you see the key “Z” in the image?

(a) Yes (b) No

(a) (b) ✓

(a) (b) ✓

(a) (b) ✓

(b) (a) 

Is there shadow on the flower?

(a) Yes (b) No

(a) (a) 

(a) (a) 

(a) (a) 

(a) (a) 

Is the front of the school bus protruding?

(a) Yes (b) No

(a) (a) 

(a) (b) ✓

(a) (a) 

(a) (b) ✓

Do the vegetables have spikes?

(a) Yes (b) No

(b) (b) 

(b) (b) 

(b) (b) 

(a) (a) 

Is the butterfly’s abdomen visible in the 
image?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(a) (a) 

(a) (a) 

Can you see stems of bananas in the image?

(a) Yes (b) No

(a) (b) ✓

(a) (a) 

(a) (b) ✓

(a) (a) 

Are there any words displayed on the 
vehicle’s lightbar?

(a) Yes (b) No

(b) (b) 

(a) (a) 

(a) (a) 

(a) (a) 

Do you see this flower from the top or the 
side?

(a) Top (b) Side

(b) (b) 

(a) (a) 

(b) (b) 

(a) (a) 

Is the door of the truck open?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(a) (a) 

(a) (a) 

GPT-4V Gemini LLaVA-1.5 InstructBLIP

Figure 10. More examples of questions in the MMVP benchmark (Part I).



Does the keyboard have a backlight?

(a) Yes (b) No

(a) (a) 

(a) (b) ✓

(a) (a) 

(a) (a) 

How many eyes of the cat can you see in the 
picture?

(a) 1 (b) 2

(a) (a) 

(b) (b) 

(b) (b) 

(b) (b) 

Does this corn have white kernels?

(a) Yes (b) No

(a) (b) ✓

(a) (b) ✓

(a) (b) ✓

(b) (b) 

What does the center button say?

(a) OK/SELECT (b) OK

(a) (a) 

(a) (b) ✓

(a) (a) 

(a) (a) 

Where is the yellow animal’s head lying in 
this image?

(a) Floor (b) Carpet

(b) (b) 

(a) (b) ✓

(a) (a) 

(b) (b) 

Are some fruits cut open or are all the fruits 
uncut?

(a) Yes (b) No

(a) (a) 

(a) (a) 

(a) (a) 

(a) (a) 

Is the ladybug positioned upright or upside 
down?

(a) Yes (b) No

(a) (b) ✓

(a) (b) ✓

(b) (b) 

(a) (a) 

In this picture, is the snake’s head visible or 
not visible?

(a) Visible (b) Not VIsible

(a) (b) ✓

(a) (b) ✓

(b) (b) 

(b) (b) 

How many wheels can you see in the image?

(a) 1 (b) 2

(b) (b) 

(b) (b) 

(b) (b) 

(b) (b) 
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Figure 11. More examples of questions in the MMVP benchmark (Part II).



What are the words in the image:

(a) “Happy Easter” (b) “Happy Easter!”

(a) (b) ✓

(a) (b) ✓

(b) (b) 

(b) (b) 

Is there an orange with leaves next to the 
cup?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(a) (a) 

(a) (a) 

Are there black stripes on the roof of the car?

(a) Yes (b) No

(b) (b) 

(b) (b) 

(b) (b) 

(a) (a) 

Is the rabbit in the image facing left or right?

(a) Left (b) Right

(b) (b) 

(a) (a) 

(b) (b) 

(a) (a) 

Are all easter eggs placed in a container (e.g.
nest, basket)?

(a) Yes (b) No

(b) (b) 

(b) (b) 

(b) (b) 

(a) (a) 

Is the sky in the background dark blue or light 
blue

(a) Dark blue (b) Light blue

(a) (b) ✓

(a) (b) ✓

(b) (b) 

(b) (b) 

Are there any fruits and vegetables in the 
heart-shaped part of the picture?

(a) Yes (b) No

(a) (b) ✓

(a) (b) ✓

(a) (a) 

(a) (a) 

In the image, is it a salmon fillet or a salmon 
steak?

(a) Salmon fillet (b) Salmon steak

(a) (a) 

(a) (a) 

(b) (b) 

(a) (a) 

How many trees are the treehouse built on?

(a) One (b) More than one

(a) (a) 

(a) (b) ✓

(a) (a) 

(b) (b) 
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Figure 12. More examples of questions in the MMVP benchmark (Part III).


