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Table 3. Detailed list of films selected for creating dense annota-
tions on objectification, with year of release and genre.

Film Year Genre(s)
Gone Girl 2014 drama, mystery, thriller,
Silver Linings Playbook 2012 drama, romantic, comedy
Crazy Stupid Love 2011 drama, romantic, comedy
The Help 2011 drama
Up in the Air 2009 drama, romantic, comedy
The Ugly Truth 2009 romantic, comedy
Marley and Me 2008 drama, family
Juno 2007 drama, comedy
Meet the Parents 2000 romantic, comedy
As Good As It Gets 1997 drama, romantic, comedy
Pulp Fiction 1994 drama, mystery
Sleepless in Seattle 1993 drama, romantic, comedy

We make available to the research community the con-
tributed dataset ObyGaze12, as well as the code used to
produce the results shown in this article and its supple-
mental material, at https://github.com/husky-
helen/ObyGaze12.

7. Dataset
This section provides additional information on the list of
films, the data annotation and processing procedure, and the
calculation of � Inter-Annotator Agreement (IAA).

7.1. List of films
The complete list of film of the ObyGaze12 dataset is
shown in Table 3. It corresponds to a 23%-subset of the
MovieGraphs dataset [53]. The 12 movies we densely an-
notate for objectification construct and concepts were se-
lected to approximately reproduce the fraction of genres in
the original dataset.

7.2. Data annotation and processing
The data annotation and processing is illustrated in Fig. 5.
During the annotation process, two annotators watch the
film, and when they see a scene that is worth annotating,
they freely indicate the boundaries of the scene, and then at-
tribute an objectification level as well as concepts, resulting
in the Annotation 1 and Annotation 2 timelines. Then dur-
ing the data processing step, the annotations are projected
onto the MovieGraphs delimitation (dashed gray lines), tak-
ing the highest level of objectification while enforcing a
minimum overlap threshold of 20% (Projection 1 and Pro-
jection 2). Annotations that have less than 20% overlap
with the MovieGraphs delimitation are not taken into ac-
count (e.g., clips 1, 3, 4, and 5 of Projection 1), and when

Figure 5. The annotation and data processing procedure is as fol-
lows. (1) Two experts annotate each film, with free delimitation
(Annotation 1 and Annotation 2). (2) Annotations are projected
onto the MovieGraphs delimitation (dashed gray line), taking the
highest level of objectification while enforcing a minimum overlap
threshold of 20% (Projection 1 and Projection 2). (3) Projections
are Merged, taking the highest level of objectification and merg-
ing the concepts only for the same level of objectification.

multiple annotations have overlap > 20%, the one with the
highest level of objectification is kept (e.g., clips 2 and 4 of
Projection 2). Finally, the projections are Merged to create
a single timeline, taking the highest level of objectification
and merging the concepts for the same level of objectifica-
tion. The reason for this choice is that it appeared in the
remediation session that most cases of initial disagreement
were scenes that some annotators actually overlooked and
agreed the objectification level should be raised to the max-
imum annotated, also considering concepts they had not no-
ticed at first.

We generated multiple variations of the projections and
merge by varying the minimum overlap threshold between
0.1-0.4. As the threshold increases, the numbers of pro-
jected and merged clips tagged with Sure and Not Sure de-
crease while those for Easy and Hard Negative increase,
with an overall difference of [+76,+68,�42,�103] clips
for the four classes [EN,HN,NS, S]. An intermediate
threshold of 0.2 was thus chosen for our experiments.

7.3. Inter-annotator agreement calculation

The � Inter-Annotator Agreement [38] was designed to ad-
dress the challenge of annotation tasks on a continuum with-
out pre-defined units. It was motivated by text annotation
tasks, but can be equally applied to similar tasks that in-
volve both unitizing and categorization. The calculation re-
flects this by calculating the score of alignment and category
separately:
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where ↵ and � represent the weights for the dissimilarities
da and dc in alignment and classification, respectively, for
two annotations u and v in the annotation set A. For our
work, we calculate the � value on the projected annotations,
thus requiring only the dc item (hence d
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(u, v))
which is defined as a distance matrix between any two ob-
jectification levels, that we set to:
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S 1 0.7 0.3 0
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The distances between all annotations in the movie are
then averaged to obtain a disorder metric for the entire film:
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In parallel, the dissimilarity is calculated and then aver-
aged over N randomly generated sequences s to obtain a
random disorder value for the corpus �(c) = 1

N
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� is then calculated as:
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where �  0 indicates random or worse. For our calcu-
lations, we used N = 62, at which � has a confidence of
p < 0.01.

Over every combination of pairs of annotators per film,
we had in total 23 pairs of annotations which achieved an
average of � = 0.42, indicating a moderate level of agree-
ment. Such a level is expected given the interpretive nature
of the task and the low number of annotator per data sam-
ple. Recent works improve learning approaches by explic-
itly considering the IAA in cases of low number of annota-
tors with moderate agreement [10, 55, 56]. Not considering
the clips annotated Not Sure (NS), which is the uncertain
and “noisy” class in human annotations, the IAA increases
to � = 0.69.

8. Experiments on task accuracy
8.1. Setup details
The implementation details of cross-validation and data bal-
ancing used to obtain the results presented in Table 2 are as
follows. For each choice of negative set (EN or HN), each
class is split into 10 equal-size folds. The last (resp. last but
one) fold of each class is reserved for test (resp. validation),
hence preserving class ratios. The remaining 8 folds of the
positive class are used for train, while for each remaining 8
folds of negatives, a subset of folds is picked so as to obtain

a balanced training set, the number of training sets depend-
ing on the class imbalance. The validation set allows to
select the best model over training epochs for each training
sets. The average performance of the models over the test
set are shown in Table 2.

We keep the pre-trained models frozen and perform an
adaptative max pooling of the resulting frame tokens, and
feed the output to an MLP made of 2 dense layers, the hid-
den layer with 128 neurons and ReLU activations, the last
with 2 softmax neurons. Experiments were carried out us-
ing a GTX 1080 Ti GPU, training of the MLP took approxi-
mately 1 hour and inference 30 minutes. Features extraction
was performed with a GTX 1080 Ti GPU for 4 hours on av-
erage.

8.2. Random and all-positive baselines
In Table 2, we consider two trivial baselines independent of
the data sample: random predicting positive with probabil-
ity 0.5, and random predicting only positive. In such cases:

precision = Fdata ; recall = Fclassifier ,

where Fdata is the fraction of positive samples in the test
data, and Fclassifier is the fraction of samples predicted
positive by the classifier. Fclassifier is 0.5 and 1 for ran-
dom and all-positive, respectively. Fdata is 23% and 19%
for test sets EN vs. S and (EN U HN) vs. S, respectively.
The resulting F1-scores are indicated for each trivial base-
line and each test set in Table 2.

8.3. X-CLIP results on unseen movies versus unseen
clips

In order to assess the feasibility of the task, the results pre-
sented in Table 2 are obtained when clips are split randomly
between train, validation and test sets, as described in Sec.
8.1 above. Different clips from the same movie can there-
fore be in the training and test sets. It is hence possible
that the X-CLIP adaptation presented in Table 2 result from
overfitting on specific movies. We here test this hypothesis
and consider distinct movies between train, test and valida-
tion sets.

We consider 10 movies for possible test and validation
sets. Each test set is made of one of these movies. For each
test set, validation sets are successively made of one of the 9
remaining movies. For each validation set, the training set is
made of the remaining movies in the dataset. The training is
made considering negative clip examples are HN only. Test
is run on (ENUHN) vs. S clips. Other setup details are kept
similar to those used to obtain the results shown in Table 2
and described in Sec. 8.1.

For each test set (movie), we present the average (and
standard deviation) of the F1-scores obtained over all 9 best
models for each validation set. Table 4 shows results aver-
aged over all test sets and over every test movie. We ob-



serve that average F1-score is 0.53, to be compared with
0.82 in Table 2. The results show that the generalization
over movies is harder than over clips only, and make for a
future challenge to tackle.

Table 4. F1-score on each movie test, when movies in train, vali-
dation and test sets do not overlap.

Test movie F1-score

As Good as it gets 0.55 (0.09)
Crazy, Stupid, Love 0.59 (0.05)
Gone Girl 0.54 (0.10)
Juno 0.67 (0.09)
Marley and Me 0.55 (0.07)
Pulp Fiction 0.29 (0.13)
Silver Linings Playbook 0.58 (0.03)
Sleepless in Seattle 0.51 (0.06)
The Help 0.56 (0.05)
Up in the Air 0.46 (0.05)

Average 0.53

9. Experiments on concept accuracy
Analysis of the decision tree Here we analyze the deci-
sion tree corresponding to the PCBM-DT model shown in
Table 2 when the training set in Easy Negative vs. Sure.
We remind that this decision tree is fed with the vector of
similarities of the X-CLIP embedding of the clip to classify
compared with every CAV. The CAV are obtained by train-
ing the SVMs on binary classification with negative exam-
ples being EN and positive examples being S and HN with
the concept, as described in Sec. 4.2. The decision tree has
a depth of 10 and the 4 first levels are shown in Fig. 6.

We first observe that a majority of child nodes on the
left-hand side of their parent nodes correspond (i) to simi-
larities with concepts lower than a threshold, and (ii) to a
majority of negative samples. This is a consistent result, as
the presence of a concept is conducive to a higher proba-
bility of an overall rating of objectification. Let us notice
that this is not the case for the light-blue node with crite-
rion Expression of an emotion, which shows this concept is
likely not well captured by the X-CLIP embeddings. Sec-
ond, with Body as root node, we observe that the presence
of concept Body tends to structure the construct into two
groups of occurrences of objectification: in the left-hand
side sub-tree, when the concept tends to be absent, impor-
tant discriminants are Expression of an emotion, Look, Type
of shot and Activities; on the right-hand side sub-tree, when
the Body concept tends to be present, important discrimi-
nants are Posture, Clothing, Appearance and Activities.

Beyond serving to analyze which concepts are currently
poorly captured by existing models, the interpretable clas-
sifiers in a PCBM approach also serve film studies experts

to analyze whether such groupings can corroborate exist-
ing theoretical analyses, or whether it is relevant to expand
these analyses thanks to the newly identified groupings.

10. Experiments with an X-CLIP model pre-
trained on LSMDC

In complement to the results in Table 2 of the X-CLIP
model from [42] trained on the Kinetics dataset, we train
another X-CLIP model introduced by Ma et al. [34] on the
LSMDC movie dataset, following the procedure described
in the code repository of [34]. Given the dissimilarity be-
tween Internet or instructional videos (such as those of Ki-
netics) and movies (noted, e.g., by [8]), our objective is to
assess whether a model pre-trained on movie videos can
achieve better performance at the new objectification-in-
movie detection task. Following the guidelines in the code
repository of [34], we retrained the X-CLIP model on the
LSMDC dataset from scratch for 5 epochs. We used 4 RTX
8000 GPUs for 5 hours. Features extraction was performed
with a GTX 1080 Ti GPU for 4 hours on average.

Table 5 presents the results of the model, obtained in the
same condition as those presented in Table 2, to be com-
pared with those of X-CLIP [42] pre-trained on Kinetics.
We observe that the results are statistically equivalent, un-
derlying the need for more efficient learning strategies to
consider the specific concepts involved in the objectifica-
tion occurrences.

Table 5. F1-score (average with standard deviations) obtained sim-
ilarly as for Table 2 with the X-CLIP model of [42] re-trained on
the LSMDC movie dataset.

Test EN vs. S (EN U HN) vs. S
Train EN vs. S HN vs. S EN vs. S HN vs. S

X-CLIP [34]
0.70 (0.08) 0.70 (0.10) 0.66 (0.06) 0.78 (0.11)pre-trained

on LSMDC



Figure 6. Decision tree trained for the objectification detection task of Easy Negative vs. Sure, fed with embedding similarities to CAV
obtained from contrasting clips with concept against Easy Negative examples. Orange (resp. blue) shaded boxes represent a majority of
negative (resp. positive) clip examples (i.e., without or with objectification).


