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A. Training Details
A.1. Teacher Model Training Details

In this work, we employed pretrained ResNet-34 and
WideResnet-40-2 teacher models from [2] for CIFAR-10
and CIFAR-100. For Tiny ImageNet, we trained ResNet-34
from scratch using PyTorch, and for ImageNet, we utilized
the pretrained ResNet-50 from PyTorch. Teacher models
were trained with SGD optimizer, initial learning rate of
0.1, momentum of 0.9, and weight decay of 5e-4, using a
batch size of 128 for 200 epochs. Learning rate decay fol-
lowed a cosine annealing schedule.
Table 1. Generator Network (G) Architecture for CIFAR10, CI-
FAR100 and TinyImageNet.
Output Size Layers

1000 Input
128× h/4× w/4 Linear, BatchNorm1D, Reshape
128× h/4× w/4 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
128× h/2× w/2 UpSample (2×)
64× h/2× w/2 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
64× h× w UpSample (2×)
3× h× w SpectralNorm (Conv (3 × 3)), Sigmoid, BatchNorm2D

Table 2. Generator Network (G) Architecture for ImageNet.
Output Size Layers

1000 Input
128× h/16× w/16 Linear, BatchNorm1D, Reshape
128× h/16× w/16 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
128× h/8× w/8 UpSample (2×)
128× h/8× w/8 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
128× h/4× w/4 UpSample (2×)
64× h/4× w/4 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
64× h/2× w/2 UpSample (2×)
64× h/2× w/2 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
64× h× w UpSample (2×)
3× h× w SpectralNorm (Conv (3 × 3)), Sigmoid, BatchNorm2D

A.2. Student Model Training Details

To ensure fair comparisons, we adopt the generator ar-
chitecture outlined in [2] for all experiments. Specifically,
the generator architecture for CIFAR10, CIFAR100, and
TinyImageNet is elaborated upon in Table 1, while the gen-
erator architecture for ImageNet is provided in Table 2.
Across all experiments, we maintain a consistent approach

Table 3. The hyperparameters for NAYER applied to four different
datasets are detailed below. Specifically, αcls, αbn, and αadv are
the hyperparameters associated with Eq. (??), and their values are
consistent with the settings defined in [2]. The variables I and S
denote the number of iterations for generating and training the stu-
dent, respectively, while g represents the training steps to optimize
the generator GθG and the noisy layers Z .

batch size (student) batch size (generator) αcls αbn αadv I g S

CIFAR10 512 400 0.5 10 1.33 2 30 400
CIFAR100 512 400 0.5 10 1.33 2 40 400
TinyImageNet 256 200 0.5 10 1.33 4 60 1000
ImageNet 128 50 0.1 0.1 0.1 20 100 2000

for training the student model, employing a batch size of
512. We utilize the SGD optimizer with a momentum of
0.9 and a variable learning rate, following a cosine anneal-
ing schedule that starts at 0.1 and ends at 0, to optimize
the student parameters (θS ). Additionally, we employ the
Adam optimizer with a learning rate of 4e-3 for optimizing
the generator.We present the results in three distinct vari-
ants, each corresponding to a different value of E : 100, 200,
and 300, all incorporating a configuration of 20 warm-up
epochs, in line with the settings defined in [2]. Further de-
tails regarding the parameters can be found in Table 3.

B. Extended Results

B.1. Experiments in Segmentation:

In response to your feedback, we conducted seman-
tic segmentation experiments following FM [1] settings.
By utilizing dataset part names such as ’Basements, Bath-
rooms, ...’ for LTE and the Noisy Layer as the random
source, our method in Table 4 outperforms previous works
with better IoU.

Method DFAD DAFL FM NAYER

Synthetic Time 6.0h 3.99h 0.82h 0.82h
mIoU 0.364 0.105 0.366 0.385

Table 4. Mean IoU on NYUv2 Segmentation dataset.

1



B.2. Noisy Layer Architecture

In Table 5, we compare the different architectures in
terms of:

• The averaging accuracy.
• The averaging convergence time, which is the average

number of epochs the generator needs to synthesize
data with Cross-Entropy (CE) Loss < 0.1.

• The averaging diversity metric, which is calculated us-
ing the average L2 distance between the features of
new and old data.

The different architectures for the Noisy Layer include:
• A1: Linear
• A2: Linear, Linear
• A3: BatchNorm, Linear
• A4: BatchNorm, Linear, Linear
• A5: BatchNorm, Linear, Sigmoid
• A6: BatchNorm, Linear, Tanh
• A7: BatchNorm, Linear, ReLU
• A8: BatchNorm, Linear, Dropout

The result demonstrates that:
• The combination of BatchNorm and single Linear

layer produce the best performance.
• The architecture of multi Linear layerslayers results

in a longer convergence time and subsequently slightly
reduces accuracy.

• The BatchNorm pplays an important role in improv-
ing accuracy, reducing convergence time by increasing
the difference between LTEs.

• The activation function such as ReLU, Sigmoid
and Tanh do not improve the performance of our
NAYER.

Table 5. The accuracies of our NAYER and FM (which uses ran-
dom noise as the input) with varying training steps for generators.

A1 A2 A3 A4 A5 A6 A7 A8

Avg. Convergence Time 16.58 22.72 9.53 15.73 9.63 9.59 9.61 12.72
Diversity Score 0.131 0.137 0.139 0.141 0.137 0.135 0.138 0.138
Accuracy 92.25 92.11 93.48 93.37 93.41 93.37 93.42 93.42

B.3. Comparison with Different Generation Steps

We compare NAYER and FM, both utilizing random
noise as input, while adjusting the training steps for their
generators. It’s important to note that for a fair compari-
son, we employ the same generator architectures, including
the additional linear layer (noisy layer for NAYER) for FM.
Furthermore, all models are trained for 300 epochs. This
approach allows us to assess their performance under con-
sistent conditions and understand how varying the genera-
tor training steps impact their accuracy. The results indicate
that our method has the best results with 40 generation steps
for CIFAR100 and 30 steps for CIFAR10. Furthermore,
NAYER outperforms FM in all cases of generator training
steps.

Table 6. The accuracies of our NAYER and FM (which uses ran-
dom noise as the input) with varying training steps for generators.
Generator’s training steps g = 2 g = 5 g = 10 g = 20 g = 30 g = 40 g = 50

FM 57.08 63.83 65.12 66.82 67.51 68.23 68.18
NAYER 59.23 65.14 68.13 69.31 70.42 71.72 71.70

B.4. Robust experiments

Thanks for your comments. The robust experiments in
three runs in Table 7 shows our method’s consistently better
accuracy with only minor standard deviation. Notably, pre-
vious works omitted these numbers, and due to their high
complexity, we did not replicate their results in this rebuttal
period.

Table 7. Averaging accuracy and standard deviation in three runs.
CIFAR10 CIFAR100

R34/R18 W402/W162 W402/W161 R34/R18 W402/W162 W402/W161
SpaceshipNet 95.39 93.25 90.38 77.41 69.95 58.06
NAYER (E = 300) 95.24 ± 0.15 94.11 ± 0.18 91.94 ± 0.15 77.56 ± 0.12 71.72 ± 0.14 62.23 ± 0.21

B.5. NAYER without Label Text Embedding (LTE)

To highlight our method’s LTE-independent capability,
we conducted experiments using one-hot vectors and Noisy
Layer in Table 8. Despite the lower accuracy of the one-
hot version compared to the LTE version, our method still
outperforms the SOTA approach in both scenarios.

Table 8. Accuracy in CIFAR10 with W402/W162 Architecture.
Method SpaceshipNet NAYER with LTE NAYER with one-hot vector

CIFAR10 93.25 94.07 93.72
CIFAR100 69.95 71.72 70.78

B.6. Non-BatchNorm Architecture

The need for batch norm loss is the limitation for most
SOTA DFKD methods. Therefore, exploring high perfor-
mance with non-batchnorm architectures is an intriguing fu-
ture direction. For this rebuttal, we conduct the CIFAR10
experiments with AlexNet as the student (Table 9). The re-
sults suggest that our NAYER outperforms previous work
when applied to AlexNet.

Table 9. Accuracy with AlexNet Student.
Teacher Accuracy Student Accuracy FM (E = 300) NAYER (E = 300)

AlexNet/AlexNet 74.74% 74.74% 65.37% 70.14%
Resnet34/AlexNet 95.70% 74.74% 68.38% 71.15%

B.7. Additional Abalation Studies for Noisy Layer

Inspired by your recommendations, we conducted addi-
tional experiments in Table 10. The results show that: (4.1)
NL with reinitialization (wRI) outperforms with out reini-
tialization (woRI); (4.2) With beta greater than one, the sum
method performs worse than the NL; (4.3) While we used
normal noise for the sum method, we further experimented
with uniform noise (uni); however, the results remained sig-
nificantly lower than our NL; (4.4) We will include the note
of a zero bias in our revised paper.



Table 10. Additional ablation Study for Noisy Layer
Method NL(woRI) NL(wRI) sum(1.5) sum(2.0) sum(3.0) uni(1.0) uni(1.5) uni(2.0)

Avg. Convergence Time(↓) 8.68 9.53 - - - - - -
Diversity Score(↑) 0.016 0.139 0.129 0.133 0.135 0.113 0.128 0.139
Accuracy(↑) 14.82 93.48 90.23 90.15 89.12 87.75 88.21 87.15

(a) t-SNE of CIFAR10 data (b) t-SNE of LTE 

Figure 1. t-SNE Visualization of Label-Text Embedding and
Ground-Truth Dataset Distribution for Four Classes: Car, Cat,
Dog, and Truck.

B.8. t-SNE Visuallization of LTE and Ground-truth
Dataset Distribution

In this section, we aim to illustrate the interclass in-
formation captured by LTE (Label-Text Embedding). To
achieve this, we provide t-SNE visualizations of the em-
beddings for labels and ground-truth data distribution per-
taining to four distinct classes: Car, Cat, Dog, and Truck.
The t-SNE representation of LTE closely aligns with the
ground-truth distribution, especially in the proximity be-
tween classes like Car and Truck, as well as Cat and Dog,
indicating notably smaller distances compared to other class
pairings.

B.9. Visualization.

The synthetic results achieved by NAYER within just
100 generator training steps on ImageNet by employing the
ResNet-50 as teacher model are presented in Figure 2a-b.
For further comparison, we also visualize synthetic images
generated by NAYER, FM, CMI, and DeepInv in Figure 2c-
f. All of these samples are generated using 20 steps with a
ResNet-34 teacher model in the CIFAR-10 dataset. While
it remains challenging for human recognition and signifi-
cantly differs from real datasets, our synthetic images con-
tain common knowledge that represents the classes, thereby
visibly demonstrating superior quality compared to other
methods.

C. Further Discussion
Does NAYER Preserve a Data-free Setting? In the defi-
nition, data-free knowledge distillation is characterized by
training a model without direct access to the teacher model’s
training data, stemming from the necessity for privacy in
datasets. Therefore, the introduction of static label text em-
beddings does not violate this definition as it does not in-
teract with any training data. In real-world applications,
obtaining label embeddings from publicly available pre-
trained language models like CLIP or ChatGPT is quick
and straightforward. Crucially, our method requires no fine-

tuning or retraining of these pretrained models, and thus it
does not use any external data. Consequently, it can seam-
lessly adapt to any real-world DFKD application.
Does NAYER Work in Meaningless Label Datasets?
The paper suggests the utilization of label-text embedding
(LTE), acknowledging its potential drawbacks in datasets
lacking meaningful labels, such as those involving chemi-
cal compounds. However, our approach highlights two key
advantages associated with LTE. Firstly, LTE acts as a dense
vector, encompassing more information and thereby facili-
tating a smoother learning process for the model. Secondly,
LTE has the ability to depict relationships between classes.
In cases where a class lacks a meaningful label, we can
still utilize the class index to generate a label text, such as
"a class of {class index}", enabling the extrac-
tion of LTE.

While this approach may not completely capture the re-
lationships between classes, it provides richer information
compared to a one-hot vector. To support this assertion, we
conducted an ablation study on various prompt engineering
techniques in Section 4.4. The results indicate that when
using only the label index instead of the label name, the
performance of P3 remains significantly superior to the best
baseline. Specifically, this template P3 achieves 93.72%
accuracy compared to SpaceshipNet (the state-of-the-art
model) with 93.25%, and 71.17% compared to 69.95%, re-
spectively. This underscores the viability of employing the
label index, particularly in datasets with less meaningful la-
bels, further validating the effectiveness of our methods in
real-world applications.

D. Furture Works
The proposed NAYER does not incorporate the innova-

tive techniques utilized in current SOTA methods, such as
feature mixup [4], knowledge acquisition and retention [3],
and momentum updating [1]. This leaves space for potential
improvements through the integration of these techniques
in the future. Additionally, NAYER can be applied to vari-
ous data-free methods, including but not limited to data-free
quantization or data-free model stealing.
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