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A. Experimental Detail

A.1. Evaluation Metric

In this works, we used two commonly used evaluation
metric in FCIL including the averaging accuracy and aver-
aging forgetting score.

• Last Incremental Averaging Accuracy (Acc): It is the
accuracy of server model after training all tasks.

• Averaging Forgetting (F): F t of task t is defined as the
difference between the highest accuracy of the model
on task t and its performance at the end of the training.
Therefore, we can evaluate the average forgetting F
by averaging all the F t for task 1 to T - 1 at the end of
task T .

A.2. Client Training Details

For a fair comparison, in accordance with [10], we em-
ployed ResNet18 [4] as the backbone for all experiments.
Each client was trained with a batch size of 128 for 100
communication rounds, with 2 local training epochs per
communication round. For CIFAR-100, we used the SGD
optimizer with a learning rate of 0.04, a momentum of 0.9,
and a weight decay of 5e-4. In the case of Tiny-ImageNet
and ImageNet, a learning rate of 0.1, weight decay of 2e-4,
and a multi-step scheduler were applied, reducing the learn-
ing rate by 10 at the 50th and 75th communication rounds.

A.3. Generator Network Training Details

The generator architecture for CIFAR-100 and Tiny-
ImageNet is detailed in Table 1, while the generator archi-
tecture for ImageNet is presented in Table 2. We utilize
the Adam optimizer with a learning rate of 2e-3 to optimize
the generator. For CIFAR-100 and Tiny-ImageNet, we con-
figure the synthetic batch size to be 256, whereas for Ima-
geNet, the synthetic batch size is set to 128 to ensure that
GPU memory remains below 24GB.

Table 1. Generator Network (G) Architecture for CIFAR-100 and
Tiny-ImageNet.
Output Size Layers

256 Input
128× h/4× w/4 Linear, BatchNorm1D, Reshape
128× h/4× w/4 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
128× h/2× w/2 UpSample (2×)
64× h/2× w/2 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
64× h× w UpSample (2×)
3× h× w SpectralNorm (Conv (3 × 3)), Sigmoid, BatchNorm2D

Table 2. Generator Network (G) Architecture for ImageNet.
Output Size Layers

256 Input
128× h/16× w/16 Linear, BatchNorm1D, Reshape
128× h/16× w/16 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
128× h/8× w/8 UpSample (2×)
128× h/8× w/8 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
128× h/4× w/4 UpSample (2×)
64× h/4× w/4 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
64× h/2× w/2 UpSample (2×)
64× h/2× w/2 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
64× h× w UpSample (2×)
3× h× w SpectralNorm (Conv (3 × 3)), Sigmoid, BatchNorm2D

A.4. Hyperparameters Tuning

In this section, we present the hyperparameter tuning ap-
proaches and results used in our experiments. The hyper-
parameters for CIFAR-100, Tiny-ImageNet, and ImageNet
datasets are summarized in Table 3.
Table 3. The hyperparameters for LANDER applied to CIFAR-
100, Tiny-ImageNet, and ImageNet are detailed below. Specif-
ically, αcur and αpre are the base factors for training the client
model, while λcls, λbn, and λadv are the hyperparameters asso-
ciated with generative model training. The variables g represent
the training steps to optimize the generator, and I is the number of
rounds for generating synthetic images.

αcur αpre λbn λoh λltc g I
CIFAR-100

0.2 0.4 1 0.5 5
40 40

Tiny-ImageNet 100 200
ImageNet 200 400

Scale Factor Tuning. Scale factor hyperparameters play a
crucial role in algorithm performance. In our experiments,
we demonstrate the sensitivity of the final performance to

1



each hyperparameter. Due to the computational expense
of hyperparameter tuning in this setting, we systematically
vary one parameter at a time while keeping others fixed.
The final accuracy for CIFAR-100 datasets with five tasks
and a Dirichlet parameter set at 0.5 is reported in Table 4.

Table 4. We examine the impact of various hyperparameters on the
final accuracy for CIFAR-100. Here, αcur and αpre denote the
scale factors for client model training, while λbn and λoh serve
as the scale factors for generator training. Additionally, λltc is
utilized for both client and generator training.
αcur Acc αpre Acc λbn Acc λoh Acc λltc Acc

0.1 47.12 0.1 46.37 0.01 46.25 0.1 47.79 0.5 47.93
0.2 48.23 0.2 47.24 0.1 47.68 0.5 48.23 1 48.12
0.4 46.92 0.4 48.23 1 48.23 1 48.12 5 48.23
0.6 44.23 0.6 47.82 10 47.31 5 48.07 10 48.07

Generation Training Steps g. Due to the distinct
challenges and image resolutions of CIFAR-100, Tiny-
ImageNet, and ImageNet, we assess the impact of different
generator training steps, denoted as g, for each dataset. Our
findings reveal that the most crucial impact of g lies in dis-
tilling knowledge from the server to the client. This is evalu-
ated through the distilling accuracy of an additional student
(discriminator) in generator training after the first task. Ta-
ble 5 illustrates that student accuracy perfectly aligns with
the final accuracy across different g values. Consequently,
we propose using this metric to expedite parameter tuning.

Table 5 shows that a low value of g has negative effects
on the performance of our work. Increasing the value of g
improves performance; however, an excessively high g does
not guarantee higher performance.

Table 5. The impact of different generator training steps, denoted
as g, on the final accuracy for three datasets. Here, ”1st Acc”
represents the distilling accuracy of the student model after the
first task, while ”Acc” signifies the final accuracy of the model.

CIFAR100 Tiny-ImageNet ImageNet

g 1st Acc Acc g 1st Acc Acc g 1st Acc Acc
30 72.12 49.21 50 49.12 27.47 100 58.12 40.38
40 74.61 51.78 100 52.82 28.21 200 61.86 41.75
50 74.51 51.71 150 52.19 28.12 300 61.37 41.65
60 74.27 51.74

Data Synthetic Rounds I . Building on the findings from
the last section, we also utilize the distilling accuracy of
the student model at the first task as the evaluation metric
for tuning the different data synthetic rounds, denoted as I ,
for three datasets. The results from Table 6 indicate that
with a low volume of synthetic data, our method’s accuracy
fails to provide sufficient information for effective learning
from previous tasks. Increasing the data volume effectively
mitigates the forgetting phenomenon and enhances perfor-
mance. However, a continuous increase in data volumes
does not yield a significant improvement in the model’s
performance. It’s crucial to highlight that the data volume
alone does not guarantee the effectiveness of synthetic data

in enhancing machine learning models.

Table 6. The effect of different data synthetic rounds, denoted as
I , on the final accuracy for three datasets. In this context, ”1st
Acc” represents the distilling accuracy of the student model after
the first task, and ”SynData” denotes the total number of synthetic
data. Please note that we set the synthetic batch size at 256 for
CIFAR-100 and Tiny-ImageNet, while the synthetic batch size is
128 for ImageNet to keep the GPU memory below 24GB.

CIFAR100 Tiny-ImageNet ImageNet

I SynData 1st Acc I SynData 1st Acc I SynData 1st Acc
20 5120 73.31 100 25600 48.12 200 25600 57.42
40 10240 74.61 150 38400 50.95 300 38400 61.16
60 15360 74.47 200 51200 52.82 400 51200 61.86
80 20480 74.32 250 64000 51.43 500 64000 60.82

B. Extended Results

Discussing about Local Training Epoch. We conducted
experiments with different client training epochs in our
methods and found that our approach is effective with
epochs higher than 1. For optimal speed, we chose l = 2,
making our methods typically twice as fast as TARGET
(4.25 to 9.87 hours), which requires local training epochs
of 5. This demonstrates our method’s superior performance
and substantial reduction in training time compared to TAR-
GET.
Table 7. Accuracies and training time of our LANDER over differ-
ent local training epoches. This experiments is conducted using a
single NVIDIA RTX 4090 in CIFAR-100 dataset with NIID(0.5).

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

Method Time (hours) 2.35 4.25 6.13 8 9.87 11.75
TARGET Acc 27.94 29.19 30.27 32.18 33.33 33.26
LANDER Acc 43.24 48.23 48.23 48.23 48.23 48.23

Comparison with Different Number of Clients. We con-
ducted additional experiments to evaluate our method with
a higher number of clients. Table 8 demonstrates that even
with an increased number of clients, our method maintains
good performance. Notably, with 50 clients, our method
significantly outperforms state-of-the-art methods (28.42%
compared to 12.72%).

Table 8. Comparison with Different Number of Clients

m=5 m=10 m=20 m=30 m=40 m=50

TARGET 36.31 27.48 21.98 19.8 15.12 12.75
LANDER 52.60 49.98 40.24 35.64 28.92 28.42

C. Privacy of LANDER

Numerous attacks prevalent in federated learning, either
in general or specifically in FedAvg [8], include data poi-
soning, model poisoning, backdoor attacks, and gradient
inversion attacks [3, 5–7]. In general, our approach does
not introduce additional privacy concerns and maintains the
same privacy issues as FedAvg. Therefore, our method is
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Figure 1. The top row displays real data, while the middle and bottom rows illustrate randomly generated synthetic data from our LANDER
for ImageNet datasets.

also compatible with any defense solutions used for Fe-
dAvg, such as secure aggregation [2] or noise injection be-
fore aggregation [9].

In contrast to several existing FCIL approaches [11],
where clients need to share a locally trained generative
model or perturbed private data, LANDER’s generative
model training relies on the weights of the global model,
already shared with all clients in the FedAvg scenario. An-
choring the label-text embedding can enhance the data-free
generation process while still preserving the privacy setting.
Figure 1 illustrates several examples of synthetic images.
From these examples, it is evident that the synthetic images
exhibit significant differences compared to real data. How-
ever, they still encapsulate common knowledge and can be
viewed as abstract visualizations of classes, thereby enhanc-
ing knowledge transfer.

Furthermore, we introduce Learnable Data Stats (LDS)
to bolster the data privacy of the FCIL setting. Unlike prior
methods [1,10,11] that demand training data statistics, such
as the mean and variance of all training data, for effective
synthetic data generation, our approach with LDS achieves
comparable performance without relying on these statistics.

By eliminating the need for training data stats, our method
enhances data privacy in the FCIL setting.

D. Does LANDER Work in Meaningless Label
Datasets?

The paper proposes employing label-text embedding
(LTE) while acknowledging its potential drawbacks in
datasets lacking meaningful labels, such as those related
to chemical compounds. Despite these challenges, our ap-
proach exclusively considers LTE as the optimal choice for
anchoring each class. In instances of datasets with mean-
ingless labels, our method can utilize the label index instead
of the label description to generate the prompt, as demon-
strated by "a class of {class index}". Conse-
quently, our method consistently outperforms the current
state-of-the-art approach when using only the label, as il-
lustrated in Section 5.4 of the main paper.

Furthermore, our method can be compatible with any
pretrained language model, thereby expanding the applica-
tions of our work in various real-world scenarios.



E. Limitations and Future Works
In our method, a primary limitation is the need to store

and transfer a large amount of synthetic data from the server
to the client, thereby increasing communication costs and
the training load for the client. Consequently, reducing the
volume of required synthetic data emerges as a potential
direction for future work.
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