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6. Training Details
Training Data. We fine-tune Lp3D using CelebV-HQ
dataset [115]. For the expression modules, we also use
the CelebV-HQ dataset but adopt an expression re-sampling
process to make the expressions of the sources and drivers
during training more different. Specifically, for a given
video, we use EMOCA [23] to reconstruct the mesh of ev-
ery frame without the head pose. Let these obtained meshes
be {M1,M2, ...,Mn}, we first pick two frames x∗ and y∗

such that the distance between their meshes are maximized:

x∗, y∗ = argmax
x,y

∥Mx −My∥2.

Then we pick the third frame z∗ such that:

z∗ = argmax
z

min (∥Mx∗ −Mz∥, ∥My∗ −Mz∥) .

We use this frame selection process for all the videos in the
CelebV-HQ dataset [115] and use the re-sampled frames to
train the expression modules. A few examples from this
selection process are shown in Fig. 9.

Frame 1 Frame 2 Frame 3

Figure 9. Some examples of our training data extracted from the
CelebV-HQ dataset [115]

Driver Augmentation. To prevent identity leaking from
the driver to the output, we apply several augmentations to

Conv2d(96, 96, kernel size=3, stride=2, padding=1)
ReLU()
Conv2d(96, 96, kernel size=3, stride=1, padding=1)
ReLU()
Conv2d(96, 128, kernel size=3, stride=2, padding=1)
ReLU()
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ReLU()
Conv2d(128, 128, kernel size=3, stride=1, padding=1)

Table 4. Architecture of ET

the frontalized driver images, including: (1) Kornia color
jiggle1 with parameters for brightness, contrast, saturation,
hue set to 0.3, 0.4, 0.3, and 0.4, respectively; (2) random
channel shuffle; (3) random warping2; and (4) random bor-
der masking with the mask ratio uniformly sampled from
0.1 to 0.3. During testing, we removed all the augmenta-
tions except the random masking and fixed the mask ratio
to 0.25. This random masking greatly improves the con-
sistency in the output, especially for border regions. In
addition, since we mask the border with a fixed rate, we
can modify the renderer to only generate the center of the
frontalized driver and further improve the performance.

Architecture Details. Our architecture design is inspired
by Lp3D [84]. Specifically, for Es and Ed, we use two
separate DeepLabV3 [22] with all normalization layers re-
moved. Since the triplane already captures deep 3D features
of the source, we adopt a simple convolutional network for
Et, which is given in Tab. 4. Recall that:

F = Fs ⊕ Fd ⊕ Ft

For the final transformer that is applied on the concatena-
tions of the feature maps F , we use a slight modification of
Elow (light-weight version) in Lp3D [84]. The architecture
of this module is given in Tab. 5 where block used is the
transformer block in SegFormer [93]. As mentioned in our
paper, we use a pretrained GFPGAN as the super-resolution
module. This module is loaded from a public pretrained
weight GFPGAN v1.4 [88] and fine-tuned end-to-end with
the network.

1https : / / kornia . readthedocs . io / en / latest /
augmentation . module . html # kornia . augmentation .
ColorJiggle

2https://github.com/deepfakes/faceswap/blob/
a62a85c0215c1d791dd5ca705ba5a3fef08f0ffd / lib /
training/augmentation.py#L318



PatchEmbed(64, patch=3, stride=2, in=640, embed=1024)
Block(dim=1024, num heads=4, mlp ratio=2, sr ratio=1)
Block(dim=1024, num heads=4, mlp ratio=2, sr ratio=1)
PixelShuffle(upscale factor=2)
upsample(scale factor=2, mode=bilinear)
Conv2d(256, 128, kernel size=3, stride=1, padding=1)
ReLU()
upsample(scale factor=2, mode=bilinear)
Conv2d(128, 128, kernel size=3, stride=1, padding=1)
ReLU()
Conv2d(128, 96, kernel size=3, stride=1, padding=1)

Table 5. Architecture of the transformer network used in the ex-
pression module.

Training Losses. To train the model used in our experi-
ments, we set λsyn = 0.1, λtri = 0.01, and λCIR = 0.01. For
GAN-based losses, we use hinge loss [56] with projected
discriminator [71].

7. Implementation Details for Holographic
Display System

We implement our model on a Looking Glass monitor 32”3.
To visualize results on a holographic display, we must ren-
der multiple views for each frame using camera poses with
a yaw angle that spans the range from −17.5◦ to 17.5◦. In
our case, we find that using 24 views is sufficient for the
user experience. While our model can run at 32FPS using a
single NVIDIA RTX 4090 on a regular monitor, which only
requires a single view at a time, it cannot run in real-time
when rendering 24 views simultaneously. Thus, to achieve
real-time performance for the Looking Glass display, we ran
the holographic telepresence demo on seven NVIDIA RTX
6000 ADA GPUs.

We parallelize the rendering process to four GPUs, so
each one needs to render six views in a batch. We dedicate
one GPU for driving image pre-processing and another one
for disentangled tri-plane estimation. We use the last GPU
to run the looking-glass display itself. This setup results in
25 FPS for the whole application. We showcase the results
rendered on the holographic display in the supplementary
videos.

8. Additional Comparisons with LPR [55]
In this section, we compare our method with the cur-
rent state-of-the-art in 3D aware one-shot head reenact-
ment, LPR [55] using their test data from HDTF [109]
and CelebA-HQ datasets [41]. In particular, for CelebA-
HQ, they use even-index frames as sources and odd-index
frames as drivers, while in contrast, in our experiment
section, we use the first half as sources and the rest as

3https://lookingglassfactory.com/looking-glass-
32

drivers. For the HDTF dataset, they use a single driver
(WRA EricCantor 000) and the first frame of each video
as source image. Compared to our split, this reduces the
diversity in the driver images. We provide the comparison
results in Tab. 6 and Tab. 7. The ECMD scores on both
datasets show that our method is more accurate in transfer-
ring expression from the driver to the source images. On
the HDTF dataset, our results have much higher CSIM. Our
FID score is better than LPR [55] on CelebA-HQ but worse
on the HDTF dataset. We found that the HDTF’s ground-
truth images have poor quality while our outputs are higher
in quality; this mismatch causes our FID to be unimpres-
sive on this dataset. Hence, this FID arguably does not cor-
rectly reflect the performance of our model. According to
the qualitative examples in Fig. 14, our method captures the
driver’s expression more accurately than LPR. However, we
note that our quality is even higher than the input, as can be
observed in Fig. 14.

We also provide extensive qualitative comparisons in
Fig. 16 and Fig. 14. The expression of our output images
is more realistic and faithful to the driver, which is particu-
larly more visible in the mouth/teeth/jaw region, as well as
for driver or source side views. Notably, in Fig. 15, it can
be observed that LPR fails to remove the smiling from the
source, resulted in inaccurate expression in the reenacted
output while our method can still successfully transfer the
expression from the driver to the source image.

Method Cross-reenactment
CSIM ECMD FID

LPR [55] 0.531 0.912 25.26
Ours 0.774 0.860 54.15

Table 6. Quantitative comparisons with LPR [55] on HDTF
dataset using the test split proposed in [55].

Method Cross-reenactment
CSIM ECMD FID

LPR [55] 0.643 0.483 47.39
Ours 0.628 0.473 34.27

Table 7. Quantitative comparisons with LPR [55] on CelebA-HQ
dataset using the test split proposed in [55].

9. Additional Qualitative Comparisons

We provide additional qualitative comparisons with other
methods in Fig. 18, Fig. 19, Fig. 20, Fig. 21, Fig. 22, Fig. 23,
Fig. 24, Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29, Fig. 30,
and Fig. 31.

In Fig. 17, we evaluate the ability to synthesize novel
views of our method. In addition, we also reconstruct the
3D mesh of the reenacted results.



In Fig. 10, we evaluate our model on self-reeactment task
using HDTF and our collected datasets.

In Fig. 11, we compares our method with the others on
source images that have jewelries. As can be seen, other
methods struggle to reconstruct the jewelries while our re-
sults still have the jewelries from the source input.

10. Addtional Experiments with PTI [70]
Our method can achieve high-quality results without notice-
able identity change without additional fine-tuning, which
is known to be computaionally expensive. In this section,
we try to fine-tune [70] the super-resolution module using
PTI [70] for 100 iterations, which takes around 1 minute per
subject. Without PTI, our pipeline runs instantly similarly
to [55]. For most cases, the difference between results with
and without fine-tuning is negligible. However, for out-of-
domain images such as Mona Lisa, PTI fine-tuning helps
retain the oil-painting style and fine-scale details from the
input source. For the fine-tuning results, please refer to the
supplementary video.

11. Additional Limitations
Besides the limitations that we discussed in the paper, we
also notice that the model cannot transfer tongue-related
expressions or certain asymmetric expressions due to lim-
ited training data for our 3D lifting and expressions mod-
ule. Since our method is not designed to handle the shoul-
der pose, the model uses the head pose as a single rigid
transformation for the whole portrait. This issue would be
an interesting research direction for future work. Also, our
model sometimes fails to produce correct accessories when
the input has out-of-distribution sunglasses. These failure
cases are illustrated in Fig. 12.
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Figure 18. Qualitative results on various datasets.



Figure 19. Qualitative results on various datasets.



Figure 20. Qualitative results on various datasets.



Figure 21. Qualitative results on various datasets.



Figure 22. Qualitative results on various datasets.



Figure 23. Qualitative results on various datasets.



Figure 24. Qualitative results on various datasets.



Figure 25. Qualitative results on various datasets.



Figure 26. Qualitative results on various datasets.



Figure 27. Qualitative results on various datasets.



Figure 28. Qualitative results on various datasets.



Figure 29. Qualitative results on various datasets.



Figure 30. Qualitative results on various datasets.



Figure 31. Qualitative results on various datasets.
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Tulyakov, Elisa Ricci, and Nicu Sebe. First order motion
model for image animation. In Conference on Neural
Information Processing Systems (NeurIPS), 2019.

[77] Aliaksandr Siarohin, Oliver Woodford, Jian Ren, Menglei
Chai, and Sergey Tulyakov. Motion representations for ar-
ticulated animation. In CVPR, 2021. 2

[78] Ivan Skorokhodov, Sergey Tulyakov, Yiqun Wang, and Pe-
ter Wonka. EpiGRAF: Rethinking training of 3d GANs. In
Advances in Neural Information Processing Systems, 2022.
3

[79] Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian,
Chen Change Loy, and Ran He. Pareidolia face reenact-

ment. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 2

[80] Jiale Tao, Biao Wang, Borun Xu, Tiezheng Ge, Yuning
Jiang, Wen Li, and Lixin Duan. Structure-aware motion
transfer with deformable anchor model. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3637–3646, 2022. 2
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[82] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M.
Nießner. Headon: Real-time reenactment of human portrait
videos. ACM Transactions on Graphics 2018 (TOG), 2018.
2

[83] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and
Daniel Cohen-Or. Designing an encoder for stylegan image
manipulation. ACM Transactions on Graphics (TOG), 40
(4):1–14, 2021. 3

[84] Alex Trevithick, Matthew Chan, Michael Stengel, Eric
Chan, Chao Liu, Zhiding Yu, Sameh Khamis, Manmohan
Chandraker, Ravi Ramamoorthi, and Koki Nagano. Real-
time radiance fields for single-image portrait view synthe-
sis. ACM Transactions on Graphics (TOG), 42(4):1–15,
2023. 2, 3, 4, 7, 1

[85] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong
Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:
Large margin cosine loss for deep face recognition, 2018. 5

[86] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-
shot free-view neural talking-head synthesis for video con-
ferencing. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10039–
10049, 2021. 2

[87] Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. To-
wards real-world blind face restoration with generative fa-
cial prior. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2021. 5

[88] Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. To-
wards real-world blind face restoration with generative fa-
cial prior. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9168–9178,
2021. 4, 1

[89] Yaohui Wang, Di Yang, Francois Bremond, and Antitza
Dantcheva. Latent image animator: Learning to animate
images via latent space navigation. In International Con-
ference on Learning Representations, 2022. 2

[90] O. Wiles, A.S. Koepke, and A. Zisserman. X2face: A net-
work for controlling face generation by using images, au-
dio, and pose codes. In European Conference on Computer
Vision, 2018. 2

[91] Jianfeng Xiang, Jiaolong Yang, Yu Deng, and Xin Tong.
Gram-hd: 3d-consistent image generation at high resolution
with generative radiance manifolds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 2195–2205, 2023. 3

[92] Sitao Xiang, Yuming Gu, Pengda Xiang, Mingming He,
Koki Nagano, Haiwei Chen, and Hao Li. One-shot
identity-preserving portrait reenactment. arXiv preprint
arXiv:2004.12452, 2020. 2

[93] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and



efficient design for semantic segmentation with transform-
ers. Advances in Neural Information Processing Systems,
34:12077–12090, 2021. 3, 1

[94] Jiaxin Xie, Hao Ouyang, Jingtan Piao, Chenyang Lei, and
Qifeng Chen. High-fidelity 3d gan inversion by pseudo-
multi-view optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 321–331, 2023. 3

[95] Hongyi Xu, Guoxian Song, Zihang Jiang, Jianfeng Zhang,
Yichun Shi, Jing Liu, Wanchun Ma, Jiashi Feng, and Linjie
Luo. Omniavatar: Geometry-guided controllable 3d head
synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
12814–12824, 2023. 3

[96] Yuelang Xu, Hongwen Zhang, Lizhen Wang, Xiaochen
Zhao, Han Huang, Guojun Qi, and Yebin Liu. Latentavatar:
Learning latent expression code for expressive neural head
avatar. In ACM SIGGRAPH 2023 Conference Proceedings.
Association for Computing Machinery, 2023. 2

[97] Zhongcong Xu, Jianfeng Zhang, Junhao Liew, Wenqing
Zhang, Song Bai, Jiashi Feng, and Mike Zheng Shou. Pv3d:
A 3d generative model for portrait video generation. In
The Tenth International Conference on Learning Represen-
tations, 2023. 3

[98] Yang Xue, Yuheng Li, Krishna Kumar Singh, and Yong Jae
Lee. Giraffe hd: A high-resolution 3d-aware generative
model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
18440–18449, 2022. 3

[99] Kewei Yang, Kang Chen, Daoliang Guo, Song-Hai Zhang,
Yuan-Chen Guo, and Weidong Zhang. Face2face ρ: Real-
time high-resolution one-shot face reenactment. 2022. 2

[100] Fei Yin, Yong Zhang, Xiaodong Cun, Mingdeng Cao,
Yanbo Fan, Xuan Wang, Qingyan Bai, Baoyuan Wu, Jue
Wang, and Yujiu Yang. Styleheat: One-shot high-resolution
editable talking face generation via pre-trained stylegan. In
ECCV, 2022. 2, 7

[101] Yu Yin, Kamran Ghasedi, HsiangTao Wu, Jiaolong Yang,
Xin Tong, and Yun Fu. Nerfinvertor: High fidelity nerf-gan
inversion for single-shot real image animation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8539–8548, 2023. 3

[102] Wangbo Yu, Yanbo Fan, Yong Zhang, Xuan Wang, Fei
Yin, Yunpeng Bai, Yan-Pei Cao, Ying Shan, Yang Wu,
Zhongqian Sun, and Baoyuan Wu. Nofa: Nerf-based one-
shot facial avatar reconstruction. In ACM SIGGRAPH 2023
Conference Proceedings, 2023. 2, 3

[103] Ziyang Yuan, Yiming Zhu, Yu Li, Hongyu Liu, and Chun
Yuan. Make encoder great again in 3d gan inversion
through geometry and occlusion-aware encoding. arXiv
preprint arXiv:2303.12326, 2023. 3

[104] Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and
Victor Lempitsky. Few-shot adversarial learning of real-
istic neural talking head models. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 9459–9468, 2019. 2, 7

[105] Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra
Shysheya, and Victor Lempitsky. Fast bi-layer neural
synthesis of one-shot realistic head avatars. In European
Conference on Computer Vision, pages 524–540. Springer,
2020. 2

[106] Bowen Zhang, Chenyang Qi, Pan Zhang, Bo Zhang,
HsiangTao Wu, Dong Chen, Qifeng Chen, Yong Wang, and

Fang Wen. Metaportrait: Identity-preserving talking head
generation with fast personalized adaptation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 22096–22105, 2023. 2

[107] Jingbo Zhang, Xiaoyu Li, Ziyu Wan, Can Wang, and Jing
Liao. Fdnerf: Few-shot dynamic neural radiance fields for
face reconstruction and expression editing. arXiv preprint
arXiv:2208.05751, 2022. 2

[108] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 5, 7

[109] Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie
Fan. Flow-guided one-shot talking face generation with
a high-resolution audio-visual dataset. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3661–3670, 2021. 7, 2

[110] Jian Zhao and Hui Zhang. Thin-plate spline motion model
for image animation. In CVPR, pages 3657–3666, 2022. 2

[111] Xiaochen Zhao, Lizhen Wang, Jingxiang Sun, Hongwen
Zhang, Jinli Suo, and Yebin Liu. Havatar: High-fidelity
head avatar via facial model conditioned neural radiance
field. ACM Trans. Graph., 2023. 2

[112] Yufeng Zheng, Victoria Fernández Abrevaya, Marcel C.
Bühler, Xu Chen, Michael J. Black, and Otmar Hilliges. I
m avatar: Implicit morphable head avatars from videos. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 13545–13555,
2022.

[113] Yufeng Zheng, Wang Yifan, Gordon Wetzstein, Michael J.
Black, and Otmar Hilliges. Pointavatar: Deformable point-
based head avatars from videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 2

[114] Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei
Tang, Li Zhang, Ziwei Liu, and Chen Change Loy. Celebv-
hq: A large-scale video facial attributes dataset. In Eu-
ropean conference on computer vision, pages 650–667.
Springer, 2022. 5

[115] Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei
Tang, Li Zhang, Ziwei Liu, and Chen Change Loy. CelebV-
HQ: A large-scale video facial attributes dataset. In ECCV,
2022. 2, 5, 7, 1

[116] Wojciech Zielonka, Timo Bolkart, and Justus Thies. Instant
volumetric head avatars. In IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 2023. 2


