
What You See is What You GAN:

Rendering Every Pixel for High-Fidelity Geometry in 3D GANs

Supplementary Material

In this supplement, we first provide additional visual re-

sults (Sec. A1) and additional evaluations (Sec. A2). We

follow with details of our implementation (Sec. A3) includ-

ing the details of our adaptive sampling approach (Sub-

sec. A3.4). We discuss experiment details (Sec. A4) such as

the details of our Normal-FID evaluation metric and base-

lines. We finally provide discussion (Sec. A5) including

limitations of our work that may be addressed in future

work. Please refer to the accompanying video, which con-

tains additional visual results and comparisons.

A1. Additional Qualitative Results

We first show both curated and uncurated results for both

our FFHQ and AFHQ models. Curated FFHQ results can

be seen in Fig. A1. Please note the highly-detailed and vari-

able facial expressions along with well-defined 3D acces-

sories like hats and glasses. Long hair is not pasted onto the

foreground, but rather retains a 3D aspect. Curated AFHQ

results can be seen in Fig. A2. Note the detailed textures of

the cat geometry and the well-defined noses and ears. For

unbiased presentation, we also show uncurated results (the

first 8 seeds) for FFHQ (Fig. A3) and AFHQ (Fig. A4). All

results shown are with Truncation = 0.7.

A2. Additional Evaluations

A2.1. Comparing Sampling Methods at Various
Sampling Counts

In this section, we show the robustness of our proposed

sampling strategy from the predicted P̂512 at very low sam-

ple counts, in comparison to unstratified and stratified sam-

pling methods. In Fig. A5, we show our proposed robust

sampling method in comparison to unstratified and stratified

inverse transform sampling. At very low samples per pixel

(spp), our method vastly out performs the standard sampling

technique. Please see the insets where our method can han-

dle depth discontinuities without jagged artifacts even at 8
samples per pixel.

We also render a pseudo ground truth image using 384

(192 coarse and 192 importance) samples and compare the

PSNR of various sampling methods in Fig. A6. Most im-

portantly for GAN training, our method’s worst-case is sig-

nificantly better than previous method’s worst-case. This

is integral to GAN training, where the discriminator will

always focus on the easiest attribute to discriminate. As

sampling artifacts cannot be amended by G, the worst-case

results dictate how well the GAN converges.

Method FID (20)↓ FID (50)↓ FID (96)↓

Mimic3D 53.57 13.31 5.37

EG3D 193.75 36.82 4.70

Ours 5.28 4.97 4.97

Table A1. FID comparison on FFHQ using various sample counts.

The samples per pixel are given in the parentheses of the metric.

A2.2. Effectiveness of Adaptive Sampling

Fig. A7 demonstrates the effectiveness of our proposed

adaptive sampling method compared to other baselines. By

allocating a small portion of samples to uncertain regions

(e.g., depth discontinuity; see the top right of Fig. A7), our

method can generate an artifact-free result even at the depth

count budget of 10 samples per pixel (10spp) compared to

the same spp without adative sampling (top left), which has

jaggy artifacts around the depth discontinuity. Without our

sampler (bottom row of Fig. A7), the standard two-pass im-

portance sampler [11] results in significant artifacts. Please

see Subsec. A3.4 for the implementation details of our adap-

tive sampling.

A2.3. Single Image Reconstruction

We additionally showcase an application of our method for

single-view 3D reconstruction in Fig. A8. The learned prior

enables high quality reconstruction of images and 3D ge-

ometry, despite the under constrained nature of the prob-

lem. We incorporate Pivotal Tuning Inversion (PTI) [13],

optimizing the latent code, camera, and noise buffers for

600 iterations, followed by optimization of the camera and

generator weights for another 350 iterations with MSE and

LPIPS [18] losses computed between the input view and

rendering.

A2.4. Benchmarking against baselines at lower spp

We also compare other methods’ ability to render with low

sample count in Tab. A1. With just 20 samples, the render-

ing quality of our method drops by only .3 in FID, compared

to the precipitous drop for other methods. This validates our

strategy to jointly learn a sampler and ensure tight SDF sur-

face for operation under a limited sample budget.

A3. Implementations Details

A3.1. Inference Details and Time

During inference, our method, by default, uses 17.6 depth

samples (see Subsec. A3.4 for details) at high resolutions in

addition to samples from the low-resolution probe, which is
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equivalent to 12 samples at high resolutions; this results in

29.6 samples per ray at high resolutions. While our model

learns view-dependent effects during training (see Eq. 5 in

the main PDF), we use a constant frontal-viewing condition

during inference for our qualitative results. Rendering from

cached triplanes runs at 4.5 FPS using plain PyTorch scripts

on a single A100 GPU and requires <15GB of VRAM.

A3.2. Training Details

In this section, we present the details of the training of our

proposed model. For the schedule of the hyperparameters of

the FFHQ model, please see Tab. A4. We train the FFHQ

model for 28.2 million images with a batch size of 32 im-

ages on 16 80GB NVIDIA A100 GPUs, which takes about

11 days. The AFHQ model is finetuned from this model

with adaptive discriminator augmentation [7] for 1.2 mil-

lion images and R1 gamma value of 6, and all other hyper-

parameters the same as in the end of the FFHQ training.

A3.3. Network Details

The architecture of the generator for T ′ follows EG3D [2]

exactly, except doubling its capacity (channel base from

32768 to 65536). As mentioned in the main paper, we add

three extra Synthesis Blocks from StyleGAN2 [8] applied

to the channels of T ′, in order to get the final triplane T–

one for each of the orthogonal planes and each applied to

one of the three slices of 32 channels of T ′.

For the details of the architecture of the proposal net-

work, please refer to Tab. A5. Slightly abusing notation, we

have labelled the image of viewing directions correspond-

ing to the target camera as φ128, parameterized as normal-

ized vectors per pixel. The other inputs, P128 (weights) and

I128 (image), follow the same notation as the main paper.

For MLPSDF, we embed the input 3D positions with the

embedding from NeRF [11] and 6 frequencies (sampled in

logspace). The architecture of this network is given in Ta-

ble A2. The first two components of the 66 dimensional

output correspond to the SDF value s and pre-activated

βpre. We map to the variance with the following equation:

β = 0.01 + Tanh(2 · βpre)(0.01 − 0.0001). This activa-

tion ensures that the variances are approximately 0.01 at

the beginning of training and prevents them from becoming

negative.

We also show the details of MLPc in Table A3. The po-

sitional encoding of the viewing direction is 2 frequencies

sampled in logspace. We finally map the 3 output compo-

nents cpre to the RGB value as Sigmoid · (cpre)(1+0.002)−
0.001.

A3.4. Details of Adaptive Sampling

As mentioned in the main paper, we use a proxy for the

variance to adaptively allocate more samples to more dif-

ficult pixels. Specifically, considering the predicted high-

resolution distributions P̂512, for each distribution, we com-

pute a scalar value to dictate how many samples to allocate.

We operate under the simplified assumption that we will al-

locate 16 samples to 90% of pixels, and 32 to the remaining

10%, resulting in total 17.6 samples per ray. To compute

which pixels receive more samples, we compute a proxy for

the variance.

To do so, for a given predicted distribution p, we com-

pute the leftover probability mass after removing the largest

16 bins. Precisely, we consider the set of non-repeating non-

negative integers less than 192,

S = {(z1, . . . , z16) | zi ∈ Z≥0, zi < 192, zi ̸= zj ∀ i ̸= j} .

We then find

Smax = max
(z1,...,z16)∈S

16∑

i=1

pzi .

The final scalar 1 − Smax is the leftover probability mass

after removing the largest 16 bins. We choose the 10% of

pixels from P̂512 which have maximized this quantity. A

visualization of these pixels is given in Fig. A7. We can see

that they are most concentrated on the depth discontinuities

where the distributions may not be unimodal. Adaptively al-

locating samples in this manner allows us to accurately ren-

der the most challenging pixels without wasting too many

samples on the “easier” distributions. As can be seen in

Fig. A7, using the same total sample count, we can avoid

jagged and inaccurate renders. For illustration purposes,

we first show an example where all pixels are rendered with

10 samples (top-left of Fig. A7) and then with 9 samples

for 90% of pixels, and 19 samples for the remaining 10%,

resulting in an average sample count of 10 (top-middle of

Fig. A7). The samples to which we allocate more samples

are visualized (top-right of Fig. A7). We compare to vary-

ing sample counts with standard sampling in the bottom row

of Fig. A7.

A3.5. Details of Stratified Sampling

As discussed in subsection 4.4, we compute the robust dis-

tribution q from the predicted distribution p̂ from the pro-

posal network. Let I = {i ∈ Z : qi > 0} denote the set

of non-zero bins each with equal probability (as in the main

paper). For stratified sampling, we partition the unit inter-

val into c = |I| strata. We assume we are given a sample

budget s > 1. We allocate ⌊ s
c
⌋ samples to each of the c

strata. We then allocate one extra sample to the (s mod c)
bins with maximal p̂i. Note that as we allocate more sam-

ples to a particular stratum, the distance δi between adjacent

intrastratum samples shrinks, thus introducing no additional

bias. In practice, we also clip the δi to the bin width to pre-

vent outsized contributions from the endpoints of nonzero

regions. For s < c, this is biased; however, in practice, due

to our tightening regularization and adaptive allocation of

samples, we almost always have s ≥ c. Additionally, at ex-

tremely low spp, our method outperforms unbiased methods

(see left column of Fig. A5).
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Layer Type Input Activation Dimension

Input 0 Input XYZ positions - 3

Input 1 Input Triplane features - 32

1 PosEnc Input 0 - 39

2 Concatenation Input 1, Layer 1 - 71

3 Linear Concatenation Softplus 128

4 Linear Layer 3 Softplus 128

5 Linear Layer 4 - 66

Table A2. Architecture of the MLPSDF network with embedding.

Layer Type Input Activation Dimension

Input 0 Input Viewing Directions φ - 3

Input 1 Input fgeo - 64

1 Embedding Input 0 - 15

2 Concatenation Input 1, Layer 1 - 79

3 Linear Layer 2 Softplus 64

4 Linear Layer 3 - 3

Table A3. Architecture of the MLPc network with embedding for viewing direction.

A4. Experiment details

A4.1. Geometry Visualization

For geometry visualization, we extract iso-surface geome-

try using March Cubes [10]. We use the voxel resolution of

5123 for comparisons and 10243 for our main results. For

SDF-based methods (ours), geometry is extracted from an

SDF field at the 0th level set. For NeRF-based methods

(EG3D, Mimic3D, and Epigraf), the surface is extracted

from the density field using the level set provided by the

official script from the authors. We render these extracted

models using Blender for visualization. To visualize nor-

mal maps, we derive the normal by taking the gradient of

the SDF field for SDF-based methods and density field for

NeRF-based methods with respect to positions.

A4.2. NormalFID

As mentioned in the main text, we use normal maps ex-

tracted from the meshes of the NPHM [6] dataset. 255

subjects are scanned with highly variable expressions. We

provide examples of these normal maps in Fig. A9. For

Normal-FID computation, we ensure all coordinate conven-

tions are consistent between baselines so that the color maps

are likewise consistent. We sample all methods with trun-

cation of 0.7 (cutoff = 14) due to the lack of diversity in

the ground truth images (see Fig. A9). Using PyFacer [4],

we also mask the background pixels to black. For Epi-

GRAF [14], we crop all sample images using HRN [9].

A4.3. Details of baseline methods

For all the baselines, we use publicly released pre-trained

models if they are available; otherwise, we quote the FID

numbers from previous work. For Mimic3D [3], Epi-

graf [14] and EG3D [2], we used the corresponding pub-

licly released models from the original authors for N-FID

and non-flatness score computation; unless explicitly spec-

ified otherwise, we also use the provided default evaluation

options for all methods. For EG3D, Mimic3d, Epigraf this

is 48 samples for a coarse pass and 48 samples for a fine

pass for two-pass importance sampling. For StyleSDF this

is 24 samples per ray.

For StyleSDF [12], we re-trained an FFHQ model at

512 resolutions and AFHQv2 cats-only model at 512 res-

olutions as they were not publicly available and used them

for geometry evaluations. We train our StyleSDF geome-

try network on FFHQ using the publicly released code, for

200k iterations as recommended by the authors, on 8 A100

NVIDIA GPUs. For our StyleSDF geometry network on the

AFHQv2 cats-only split, training with the provided AFHQ

config from scratch was unstable and collapsed. Instead,

we finetune the publicly released StyleSDF AFHQv2 all-

animals geometry network on our cats-only split for 50k

iterations and use that for evaluation.

A5. Discussion

A5.1. Limitation and Future Work

We showcase three failure cases of our method in Fig. A10.

In the first row, we see that there are seams in the side of

the face in both the geometry and rendering. We hypothe-
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Hyperparameter Number of Images (in millions) Value

R1 Gamma

0-18 1

18-25 4

25 onwards 2

Neural Rendering Resolution

0-10 64

10-18 128 (linearly increased over 1m images)

18 onwards 512 (linearly increased over 0.2m images)

βtarget
0-10 0.01

10 onwards 0.001 (linearly decreased over 1m images)

Learning Rate Multiplier for MLPc
0-25 2

25 onwards 1

Render with Predicted Distributions
0-17 No

17 onwards Yes

Supervise Predicted Distributions
0-16 No

16 onwards Yes

Table A4. Schedule of hyperparameters given in millions of images the discriminator has seen during training. We train for 28.2m images

total.

Layer Type Activation Upsample Input Source(s) Dimension

Input 0 Input - - P128 191 x 128 x 128

Input 1 Input - - I128 3 x 128 x 128

Input 2 Input - - φ128 3 x 128 x 128

1 Concatenation - - Inputs 0-2 197 x 128 x 128

2 Conv2D ReLU No Layer 1 256 x 128 x 128

3 Conv2D ReLU No Layer 2 256 x 128 x 128

4 Conv2D ReLU No Layer 3 256 x 128 x 128

5 Conv2D ReLU No Layer 4 256 x 128 x 128

6 Conv2D ReLU Yes Layer 5 256 x 256 x 256

7 Conv2D ReLU No Layer 6 256 x 256 x 256

8 Conv2D ReLU No Layer 7 256 x 256 x 256

9 Conv2D ReLU Yes Layer 8 256 x 512 x 512

10 Conv2D None No Layer 9 191 x 512 x 512

11 BilinearUpsample - Yes Input 0 191 x 512 x 512

12 Conv2D ReLU No Layer 10 + Layer 11 256 x 512 x 512

13 Conv2D ReLU No Layer 12 256 x 512 x 512

14 Conv2D ReLU No Layer 13 256 x 512 x 512

15 Conv2D Softmax No Layer 14 191 x 512 x 512

Table A5. Architecture of our proposal network.

size this issue may be related to the frontal camera bias in

FFHQ and may be ameliorated by a more uniform sampling

of cameras. In the second row, we see that in some samples

with large amounts of specularity, the surface may become

unnaturally rough, which may be remedied by additional

regularization on the surface normal [17]. Finally, in the

third row, we see a rare phenomena where density close to

the camera occludes the subject.

Future works may utilize more balanced datasets with

larger coverage around the entirety of the face [1]. Extend-

ing to the human body [5] or more general classes [15], is

also extremely interesting. Combining our approach with a

3D lifting approach [16] using our method as 3D synthetic

data, may allow high-fidelity geometry estimation from a

single image.
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Figure A1. Curated samples from our FFHQ model.
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Figure A2. Curated samples from our AFHQ model.
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Figure A3. Uncurated (seeds 1-8) samples from our FFHQ model.
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Figure A4. Uncurated (seeds 1-8) samples from our AFHQ model.
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Figure A5. We show the rendering results of various sampling methods at different sample counts. We visualize both the rendering and a

color map for the L2 error.
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Figure A6. We show the PSNR for the worst percentage of pixels for all three sampling methods (subject is the same as Fig.A5). As seen

in the charts, our method significantly outperforms the previous sampling methods at very low samples per pixel, e.g., 2 samples. At higher

sample counts, our proposed sampling method has a significantly better worst-case result, e.g., for the worst 1% or 0.1% of pixels, as seen

in the lower half. The importance of this is detailed in A2.1. The red dotted line indicates the maximal number of samples during training

that fit on one 80gb A100 when rendering two images (per GPU).
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Figure A7. We visualize the effectiveness of our proposed adaptive sampling approach. In the top-left, we see that using 10 samples for all

pixels results in jagged artifacts. Using the same number of samples, we allocate 9 samples to 90% of pixels and 19 to the remaining 10%,

which prevents these jagged artifacts. The top 10% of pixels by the quantity computed in Subsec. A3.4 is visualized in the top right. In

comparison, we also show the standard method without the learned sampler with 10 and 22 samples in the bottom-left and bottom-middle,

respectively. 22 corresponds to 10 samples along with the 12 samples allocated for the initial probe P128. Finally, we show the ground-truth

rendering with 384 samples (192 coarse and 192 importance) in the bottom right.
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Figure A8. We showcase examples of single-view 3D reconstruction with our method. The left column shows the test image inputs, the

right three columns show our inversion sample from three novel views.
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Figure A9. 20 sample normal maps from [6] masked using Facer [4], from which we compute the N-FID score.
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Figure A10. Three failure cases of our 3D generative model. First row shows seams on the side of the face; second row displays surface

roughness to simulate specularity; and third row shows a rare phenomena where density appears close to the camera, occluding the subject.
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