
The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose
Refinement (Supplementary)

Gabriele Trivigno1 Carlo Masone1 Barbara Caputo1 Torsten Sattler3
1 Politecnico di Torino

2 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague
{gabriele.trivigno,carlo.masone,barbara.caputo}@polito.it torsten.sattler@cvut.cz

Supplementary
In this supplementary material we show:
• an ablation on different scoring functions to demonstrate

the effectiveness of simple pixelwise comparison, as men-
tioned in L500 of the main paper;

• a convergence analysis to test the robustness of our algo-
rithm to initialization, as discussed in L422 of the main
paper;

• additional insights on hyperparameters;
• a discussion on inference time;
• a pseudo-code version of our algorithm.

1. Scoring functions
In our paper we showed the effectiveness of dense, pre-
trained features for assessing pose similarity, against the
previous methods that adopt sparse, specialized features.
The main idea behind these experiments is to test whether
dense features provide an actual advantage or if the same
results would hold for sparse comparisons as well. Thus,
we devised several alternative scoring functions that could
be used to rank candidates using sparse comparisons.
As a reminder, this scoring function is needed to compute
the loss from Eq. 1 of the main paper (LFθ

(T |Iq, IT)),
which at each step is used to compare the rendered candi-
dates against the query, ranking them. In Tab. 1 we compare
the following cost functions:
• (1): the scoring function adopted in our method; detailed

in Eq. 2 of the main paper, i.e., the pixelwise L2 distance
between feature maps, normalized along the channels;

• (2): a straightforward alternative to dense comparison is
to use exhaustive matching of detected keypoints. To this
end, we use ALIKED [13] to obtain for each image a
set of keypoints and associated descriptors {ki, fi}, ki ∈
R2, fi ∈ Rd. Computing the mutual nearest neighbors
between the descriptors of the query Iq and a candidate
IT , we obtain a set of matched keypoints {ki, kj}, i ∈
KIq , j ∈ KIT . Finally, the score is the reprojection error
among matched keypoints, i.e., their spatial distance (in

pixel space). Thus:

LFθ
(T |Iq, IT) =

∑
i∈KIq ,j∈KIT

||ki − kj ||2 . (1)

• (3): exhaustive matching increases significantly the cost
of computing the loss. Moreover, keypoints that are in
opposite locations in the considered image pairs do not
provide a useful signal for refining the pose. Thus, a nat-
ural alternative to reduce the cost is to match keypoints
locally. In this scenario, the nearest neighbors are com-
puted only for keypoints that satisfy ||ki − kj ||2 ≤ W ,
where W is the patch size that defines the local window
around each keypoint in which we compute matches.

• (4): implicit matching is an intriguing concept proposed
in [5]. The main idea is that a standard CNN can be used
to extract keypoints, in place of a dedicated keypoint de-
tector. The assumption is that in such networks, each
channel has learnt to detect a certain kind of features; thus
by looking for local maxima in each channel of the fea-
ture maps, these spatial location can be compared among
pairs of images without matching descriptors. To test this
approach, given a feature volume Fl ∈ RC,H,W , we com-
pute, for each channel: kc = argmax

h,w∈H,W
F c,h,w
l . They are

extracted both for the query kqc , and a candidate kTc .
To reduce noise we smooth these locations by applying a
gaussian filter over a window of size W and then compare
them:

LFθ
(T |Iq, IT , l) =

∑
c∈Cl

||kqc − kTc ||2 . (2)

Results. Results in Tab. 1 show that among scoring func-
tions based on sparse comparisons (2, 3, 4), performances
are proportional to the computational cost, i.e., the more
accurate is (2) which is also the more expensive. Over-
all, simple dense comparison (1) is the best performing one,
while being also lightweight and hyperparameter-free. This
effect can be understood in light of the discussion in Sec.

1

Scoring function ShopFacade

(1) Dense Comparison 12 / 0.45
(2) Exhaustive Matching 20 / 0.93
(3) Patch-wise Matching 34 / 1.36
(4) Implicit Matching 85 / 1.92

Table 1. Ablation on scoring function. Shows the effectiveness
of densely comparing feature maps against more sophisticated cost
functions. Median errors reported in cm/°.

Coarse Features Fine Features ShopFacade OldHospital

CNN features: ResNet-18
CosPlace [2] ImageNet 12 / 0.45 39 / 0.73
ImageNet ImageNet 12 / 0.55 46 / 0.80
SimCLR [3] SimCLR [3] 18 / 0.62 50 / 0.83

Transformer: ViT small
DINOv2 [9] DINOv2 [9] 34 / 0.81 59 / 1.15

Table 2. Ablation on feature extractors, to test whether the prop-
erty of dense features being robust estimators of visual similarity,
which is traditionally associated with feature maps from CNN ar-
chitectures, holds for state-of-the-art vision transformers. Median
errors in cm/°.

3.1 of the main paper: comparing dense features allows to
fully exploit the properties of deep networks as perceptual
similarity [11] estimators, and it provides a smoother signal
(w.r.t. sparse features) thanks to the spatial structure of fea-
ture maps.
This property of dense feature maps was one of the core
ideas behind our paper. While this effect was studied mainly
with feature maps from CNN architectures [1, 8, 11], in
Tab. 2 we experiment with the state-of-the-art vision trans-
former trained in DINOv2 [9]. In these architectures each
image patch is encoded and processed as a token. In order to
use this model for our algorithm, we compute the distance
between corresponding tokens in a pair of images, using dif-
ferent layers of the encoder to preserve our Coarse-to-Fine
approach.
While these tokens, paired with positional encoding, pre-
serve spatial information, we find that using these features
yields only adequate results, much lower than what can be
achieved with a simple ResNet-18. These findings can be
explained in light of the receptive field of each token be-
ing constrained to be equal or higher than the patch size
(14 pixel specifically), and the fact that the self-attention
scheme embeds some global context into each patch. This
argument was recently sustained in RoMa [6], which pro-
poses to refine DINOv2 features with a specialized CNN
architecture. In Tab.5 of the main paper, we experiment
with this architecture and find that it surpasses or match

other specialized pose refiners, as shown in the table. Note
that RoMa features rely on an architecture with roughly 80x
more parameters than the ResNet-18 that we adopt.

2. Optimization hyperparameters

In this section we provide additional insights and ablations
on some key hyperparameters of our algorithm. As
discussed in Sec. 4.1 of the main paper, a key element
for the success of our pose refinement is exploiting a
Coarse-to-Fine approach, where we gradually move from
deeper features to shallower ones. Given that we employ
3 different feature levels (coarse-medium-fine), this entails
choosing 2 hyperparameters, namely N1 and N2. N1

indicates after how many steps we switch from coarse to
medium; N2, reported as a negative value, represents that
the last N2 steps are carried out with the shallower features.
Tab. 3 reports results on 2 Cambridge scenes, showing
the effect of these 2 values. For these experiments,
when varying N1, we keep fixed the number of steps after
N1. When changing N2, the number of steps before is fixed.

Another important part of our method is multi-
hypothesis tracking [4], optimizing independently multiple
beams. In principle, using more beams should always im-
prove results, although this assumption does not hold if the
total number of candidates sampled at each step is fixed,
which is desirable in order to contain computational cost.
Thus, we study this trade-off in Fig. 1, where we ablate the
effect of not using beams at all (i.e., nbeams = 1), or more.
In our main experiments we use 3 beams. The number of
candidates is 50 in the beginning, and it is slowly reduced
to 20 in the last steps.

N1 N2 ShopFacade OldHospital

15 -10 16 / 0.74 50 / 1.42
30 -10 12 / 0.45 39 / 0.73
50 -10 13 / 0.47 41 / 0.74

30 0 20 / 0.50 43 / 0.80
30 -20 12 / 0.43 37 / 0.72
30 -30 10 / 0.42 36 / 0.70

Table 3. N. of steps before switching to coarser features. We test
different values of N1 (switch from coarse to mid-level features),
and N2 (switch to finer features). Underlined values are the default
used in the main paper. Median errors reported in cm/°.

Results. As we state in the main manuscript, our algorithm
is robust to the choice of the values of (N1, N2), provided

1 3 5
N. beams

32
34
36
38
40
42

M
ed

. T
ra

ns
l.

er
r.

[c
m

]

1 3 5
N. beams

0.45

0.50

0.55

0.60

0.65

0.70

M
ed

. R
ot

. e
rr.

 [°
]

Figure 1. Number of independent beams. Results on KingsCol-
lege.

that enough steps are performed with coarse features in
the beginning. This is because, despite the fact that all
feature levels exhibit a convex basin around each pose,
the convergence basin is narrower for shallower features.
Since initialization from retrieval can yield large baselines,
it is important to rely on coarse features for enough steps
to refine the pose just enough to fall into the convergence
basin of the next finer levels.
This is apparent from Tab. 3, as it shows that doing too few
steps with conv3 features (N1 = 15) has the biggest impact
on performances. On the other hand, doing more steps does
not harm performances, although it makes convergence
slower.
Regarding the value of N2, doing more steps improves
results, however the improvement is small, and for this
reason we kept it to −10 to exploit the best trade-off
between cost and performance gain.

Fig. 1 proves the usefulness of relying on multiple op-
timization threads (beams) in parallel. However, using too
many beams is also counterproductive; since the number of
candidates is the same in these experiments, if the number
of beams increases, each beam will sample less candidates,
thus reducing their ability to explore the state space, and
ultimately harming performances.

2.1. Convergence analysis

As with any refinement algorithm, the accuracy of the ini-
tial poses is a crucial factor that affects convergence speed,
as well as performances. To study the sensitivity of our
method to the initial error, we perform the following ex-
periment, similarly to [12]: we randomly perturb the ground
truth poses with different error magnitudes, and then run our
algorithm for a fixed number of steps. We use magnitudes
of 1, 5, 10, 15 meters and 5, 10, 20, 30 degrees, and for each
magnitude we repeat the sampling 10 times to carry out a
more robust analysis.
These experiments are performed on ShopFacade, and we
run our optimization for 40 steps. Note that results in
the main paper for Cambridge scenes are obtained with 80
steps; in this setup we used less iterations due to the high
number of combinations and repetitions of each experiment

(160 runs in total). The emerging trends and the conclusions
hold nonetheless.

5 10 20 30

1

5

10

15

Tr
an

sla
tio

n
of

fs
et

 [m
]

0.22 / 0.69

0.34 / 1.65

0.69 / 3.16

2.14 / 5.65

0.18 / 0.89

0.34 / 1.67

0.71 / 3.53

2.31 / 5.88

0.19 / 0.96

0.35 / 1.68

0.77 / 3.69

5.07 / 7.26

0.22 / 1.07

0.40 / 1.90

1.00 / 4.85

6.52 / 9.76

Rotation offset [deg]

Figure 2. After 20 steps

5 10 20 30

1

5

10

15

Tr
an

sla
tio

n
of

fs
et

 [m
]

0.08 / 0.29

0.28 / 1.43

0.58 / 2.86

1.81 / 5.46

0.15 / 0.75

0.29 / 1.47

0.63 / 3.27

2.01 / 5.74

0.16 / 0.82

0.31 / 1.51

0.66 / 3.26

4.22 / 6.95

0.20 / 1.02

0.35 / 1.76

0.89 / 4.19

6.24 / 9.25

Rotation offset [deg]

Figure 3. After 40 steps

Figure 4. Convergence analysis. For the scene of ShopFacade,
we randomly perturb ground truth poses with fixed magnitudes
of error, and then run our optimization to asses its robustness to
initialization. Numbers are reported as median errors, averaged
over 10 runs, as m/°.

Results. Fig. 4 displays in a matrix the results for each
translation/rotation combination of errors, after 20 and 40
iterations. At a glance, it is evident from the color map that
the obtained accuracy is more correlated with translation
error. This effect is understandable as details of the scene
might be less recognizable from a distance, thus falling out-
side of the convergence basin. On the other hand, at a close
distance, our optimization can recover from a high rotation
error even if there is very little overlap in the views.
Overall, our algorithm is robust to errors up to 5 meters, re-
gardless of the rotation, while performances start to degrade
at 10 meters.

3. Inference cost
We do not claim inference speed among the selling points
for our method, since in the literature we did not find a re-
liable comparison on the same hardware among different
methods and implementations. Nonetheless, we report here
a breakdown of the time required to optimize a pose over
80 iterations, which is the number of steps that we used to
obtain results for Cambridge scenes. Times are measured
on a RTX4090. Rendering the Gaussian cloud from [7]
takes 0.8ms; and in total we render 2600 candidates for
each query over the steps.
Extracting features with a truncated ResNet-18, with FP16
precision and batching takes 0.1ms per image at the lowest
resolution (256 × 320). At the highest resolution that we
use (320× 480), it takes 0.2ms. Considering that we use 3
beams, our approach takes on average 2.4s for Cambridge,
and about 8.7s for Aachen (as we perform more iterations).
Our optimization relies on independent beams, which can
be implemented with multiprocessing, reducing runtime re-

spectively to 1.1s and 4.5s on the same hardware. When
used to refine HLoc poses, we use only 5 iterations, which
takes as little as 200ms.

3.1. Comparison with PixLoc

On our RTX4090, PixLoc takes 3.1s per query indepen-
dently of the scene. Our method is more versatile as it
does not require any training, and it can be coupled with
any dense scene representations, whereas PixLoc requires
E2E training and a point cloud. Tab.4 of the main paper
shows how our method can be useful as an efficient pre-
processing steps in the setting proposed in [10], with dif-
ferent kinds of meshes. Our method also works better than
PixLoc as a post-processing step on HLoc poses, and on
night queries. On indoor datasets and small outdoor scenes,
PixLoc achieves superior results, although being slower.

4. Algorithm pseudocode
Below in Algorithm 1 we provide a high-level pseudo-code
of our algorithm. It highlights: (i) the render&compare
structure of our approach, (ii) the fact that the model that
we use is a function of the step, (iii) that the particle filter,
and thus the noise applied during sampling, are also a func-
tion of the step.
It does not contain, for simplicity, the multiple beams which
are optimized in parallel, or other low-level details.
More in detail, the pseudo-code shows, starting from the ini-
tial estimate (est center, est qvec), a loop for each query
where, in each step:
• The number of candidates (variable N cand), and the

noise magnitude (noise t, noise R) are obtained deter-
ministically as a function of the step;

• the particle filter, based on the noise magnitude and cur-
rent pose estimate, is used to sample N cand new hy-
pothesis;

• the model is obtained as a function of the step (the back-
bone will be truncated at a certain layer), and it is used to
extract features from the query q feats and the sampled
candidates rend feats;

• given the features, the sampled candidates are given a
score by the function rank poses; finally the scores are
used to update the current estimate

We will release our implementation publicly upon accep-
tance, as we believe it can prove useful to the community.

References
[1] Seyed Ali Amirshahi, Marius Pedersen, and Stella X. Yu.

Image quality assessment by comparing cnn features be-
tween images. In Image Quality and System Performance,
2016. 2

[2] Gabriele Berton, Carlo Masone, and Barbara Caputo. Re-
thinking visual geo-localization for large-scale applications.
In CVPR, 2022. 2

Algorithm 1 MCLoc pose refinement

N ← n steps
renderer ← load scene model()
for query ∈ query list do
est center, est qvec← init pose()
for step ∈ 1..N do
N cand← get N cand(step)
noise t, noise R← get perturb pars(step)
sampler ← part filter(N cand, noise t, noise R)

poses← sampler.sample(est center, est qvec)
renders← renderer(poses)

model← get model(step)
q feats← extract features(query,model)
rend feats← extract features(renders,model)

center, qvec← rank poses(q feats, rend feats)

est center, est qvec← update(center, qvec)
end for

end for

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 2

[4] Changhyun Choi and Henrik Christensen. Robust 3d vi-
sual tracking using particle filtering on the special euclidean
group: A combined approach of keypoint and edge features.
Intl. Jour. of Robotics Research, 33, 2012. 2

[5] Titus Cieslewski, Michael Bloesch, and Davide Scaramuzza.
Matching features without descriptors: implicitly matched
interest points. arXiv preprint arXiv:1811.10681, 2018. 1

[6] Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten
Wadenbäck, and Michael Felsberg. Roma: Revisiting ro-
bust losses for dense feature matching. arXiv preprint
arXiv:2305.15404, 2023. 2

[7] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 3

[8] Jongyoo Kim and Sanghoon Lee. Deep learning of human
visual sensitivity in image quality assessment framework. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 2

[9] Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V.
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Rus-
sell Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-
Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nico-
las Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou,
Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bo-
janowski. Dinov2: Learning robust visual features without
supervision, 2023. 2

[10] Vojtech Panek, Zuzana Kukelova, and Torsten Sattler.
MeshLoc: Mesh-Based Visual Localization. In European
Conference on Computer Vision (ECCV), 2022. 4

[11] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 586–595, 2018. 2

[12] Zichao Zhang, Torsten Sattler, and Davide Scaramuzza. Ref-
erence pose generation for long-term visual localization via
learned features and view synthesis. International Journal of
Computer Vision, 129:821–844, 2021. 3

[13] Xiaoming Zhao, Xingming Wu, Weihai Chen, Peter CY
Chen, Qingsong Xu, and Zhengguo Li. Aliked: A lighter
keypoint and descriptor extraction network via deformable
transformation. IEEE Transactions on Instrumentation and
Measurement, 2023. 1

	. Scoring functions
	. Optimization hyperparameters
	. Convergence analysis

	. Inference cost
	. Comparison with PixLoc

	. Algorithm pseudocode

