
GDA: Generalized Diffusion for Robust Test-time Adaptation

Supplementary Material

7. Implementation Details

Style loss We apply the CLIP model with model architecture ViT-Base/16 for calculating the style loss. By leveraging the
rich semantic information of CLIP, we are able to shift the OOD sample to the source domain. It has been used in [C2] for
style transfer. The input images are presented to the model as a sequence of fixed-size patches, where the patch size is 16*16).
We get the corresponding image embedding for all image patches from the output of the visual encoder of CLIP model. We
then calculate the similarity between the image embeddings and the text token embedding extracted from language encoder of
CLIP model. The text prompts we use for style loss are the words related to photo-realistic or real photo. We assume partially
knowing the source domain information is allowable in domain generalization.

Content preservation loss We provide a more detailed of the contrastive loss for content preservation. The input of content
loss is a batch of features extracted from generated sample itself xg

t and the corresponding source sample x0. For example, v
is the ith patch in sample xg

t , the ith patch p in sample x0 is its positive pair p+, and all the other patches except the ith patch
in sample x0 will be the negative pair p−. The purpose of the contrastive loss is to force the feature distance between a patch p

and its corresponding positive patch p+ to become closer to each other under the latent space. Meanwhile, the loss forces p
and p− apart from each other.

Marginal entropy loss We adopt AugMix [12], a data augmentation tool from Pytorch, which randomly select several
augmentation functions (e.g., posterize, rotate, equalize) to augment the data. The augmention set A = A1, A2, ..., Ak excludes
operations that overlap with corruption types in ImageNet-C. For generating one augmented sample xaug , we set the mixing
weight w1, w2, ...w3 for every augmentation in A. The mixing weight, which is a k-dimensional vector of convex coefficients,
is randomly sampled from a Dirichlet distribution. The augmented sample xaug equals to wn∗An(...(W2∗A2(w1∗A1(xorig)).

Analysis of Hyperparameters in the Loss Term We conduct the sensitivity analysis on hyperparameters for every loss. We
follow the range of hyperparameters used in [49]. In Table 5, we whoe the results of ImageNet-R under different combination
of loss terms.

Style loss
Param. 1000 5000 15000 20000 30000

Acc. 38.6 44.5 44.0 44.2 40.1
Content loss

Param. 100 500 700 1000 1500
Acc. 38.8 39.4 42.6 44.5 39.8

Marginal loss
Param. 50 100 150 200 250

Acc. 38.7 38.9 41.6 44.5 42.4

Table 5. Hyperparameter analysis for ImageNet-R

The Impact of Different Loss Term We show the impact of different loss term by removing content preservation loss or
style loss in Table 6. The result of using only style loss is better than content loss on ImageNet-Rendition and Sketch.



w/o style w/o content w/o marg. GDA (Ours)
Rendition 37.7 37.9 39.4 44.5

Sketch 23.3 23.5 23.9 25.5

Table 6. The Impact of Different Loss Term

The Choices of Hyperparameters In GDA, the weights for each loss function are hyperparameters that need to be chosen
by users. We combine the three loss terms as a joint optimization, with their Lagrange multipliers as hyperparameters. The
hyperparameter values for each benchmark are shown in Table 7.

Marg. Entropy Style Content
ImageNet-C 100 5000 1500
Rendition 200 5000 1000

Sketch 200 1000 700
Stylized 200 1000 700

Table 7. Hyperparmeter setting for marginal entropy loss, style loss, and content preservation loss. The number will be multiplied on every
loss function during the optimization.



8. More Experimental Results

In this section, we show more experimental results on GDA, including the detailed results of ImageNet-C on different severity,
comparison with input-based adaptation baselines, and model-based adaptation baselines.

8.1. ImageNet-C Detailed Results

In main paper Table 1, we show the average accuracy on 15 types of corruption for ImageNet-C. Here, in Table 8, we show the
detailed comparison of GDA with Standard and three diffusion-based baselines. The four main groups of corruption, Noise,
Blur, Weather, and Digital, are composed of 15 types of corruptions. We show the detailed corruption types in every group in
Table 9. Our GDA improves the robust accuracy by 4.4%∼5.64% on three standard models and outperforms every baselines.

Standard DiffPure [30] DDA-10 [5] w/o marg. GDA (Ours)
Noise 23.6 17.03 33.4 29.2 37.0
Blur 30.5 9.28 26.8 32.4 36.2

ResNet50 [8] Weather 45.1 11.42 39.7 46.4 46.5
Digital 50.1 25.62 47.9 50.9 52.0
Avg. Acc. 37.3 15.83 36.9 40.9 41.7
Noise 64.2 56.30 66.17 63.96 78.99
Blur 44.83 31.4 50.68 44.32 47.78

ConvNext-T [23] Weather 64.67 45.46 65.92 63.75 67.83
Digital 67.15 55.8 70.3 66.77 70.08
Avg. Acc. 59.60 47.23 63.26 59.70 65.24
Noise 57.56 44.93 50.4 59.7 64.3
Blur 38.05 19.27 38.85 39.3 45.2

Swin-T [22] Weather 59.68 35.63 50.05 61.1 62.2
Digital 62.03 42.93 59.3 63.33 65.7
Avg. Acc. 54.33 35.69 49.65 55.86 59.35

Table 8. Performance on the ImageNet-C for three model architectures under four groups of corruptions. Numbers in bold show the best
accuracy.

Corruption Types
Noise Gaussian Noise, Impulse noise, Shot noise
Blur Motion blur, Zoom blur, Defocus blur, Glass blur

Weather Snow, Frost, Fog, Brightness
Digital Contrast, Jpeg compression, Pixelate, Elastic transform

Table 9. Detail of four corruption groups with 15 corruption types

Results of Severity 5 In Table 10, we show more experimental results on ImageNet-C under severity 5. We compare the
results between GDA and the four baselines, including Standard, Diffpure [30], DDA [5], and w/o marginal. GDA consistently
achieves the highest accuracy and surpasses all baselines.

ResNet50 ConvNext-T Swin-T
Standard 18.7 39.3 33.1

Diffpure [30] 16.8 28.8 24.8
DDA [5] 29.7 44.2 40.0

w/o marg. 30.2 44.4 41.6
GDA (ours) 31.8 44.8 42.2

Table 10. The average classification accuracy on the ImageNet-C under severity level 5 for three model architectures.



8.2. Compare with Input-based Adaptation

Similar to our GDA, prior works studied input-based adaptation [1, 25, 43], updating the input during the inference time.
However, most of them typically focus on adding extra vectors or visual prompts (VP) to the input and optimizing with
pre-defined objectives, which is different from our diffusion-based method. To better understand the efficacy of traditional
VP and diffusion-based approaches, we compare the performance of GDA with several input-based adaptation baselines
in Table 11. As Table 11 shows, compared to BN and Memo, GDA outperforms all four input-based adaptation baselines
by 2.42% to 4.46% in avgerage accuracy, which demonstrates that our proposed diffusion-based method is better than the
baselines which add vector directly to the input pixel. We explain each input-based adaptation baselines as follows.

Baseline details for input-based adaptation
• Self-supervised Visual Prompt (SVP) [25]: The prompting method to reverse the adversarial attacks by modifying

adversarial samples with ℓp-norm perturbations, where the perturbations are optimized via the self-supervised contrastive
loss. We extend this method with two different prompt settings: patch and padding. For the patch setup, we directly add a
full-size patch of perturbation into the input. For the padding setup, we embed a frame of the perturbation outside the input.

• Convolutional Visual Prompt (CVP) [43]: The prompting method that adapts the input samples by constructing the
convolutional kernels. Given a corrupted sample x and a convolutional kernel k. The convolutional kernels can be
initialized with random initialization and optimized with a small kernel size (e.g., 3*3 or 5*5) by projected gradient
descent using self-supervised loss. We convolve the input x with the convolutional kernel k and update them iteratively by
x′ = x0 + λ ∗ Conv(x0, k), where the λ parameter controls the magnitude of convolved output when combined with the
residual input. We set the range to be [0.5, 3] and run test-time optimization to automatically find the optimal solution. We
chose the contrastive loss as our self-supervision task.

Standard SVP (patch) SVP (padding) CVP (3*3) CVP (5*5) GDA
Noise 28.85 29.37 29.38 31.59 30.53 37.03
Blur 30.45 29.59 29.58 30.80 31.0 32.4

Weather 42.99 41.18 41.22 42.27 42.45 46.5
Digital 50.45 48.96 48.96 52.58 51.45 50.98

Avg. 38.19 37.27 37.28 39.31 38.85 41.73

Table 11. Compare GDA with input-based adaptation baselines.



8.3. Compare with Model-based Adaptation

In Section 2, we introduce prior existing works on model-based adaptation, such as TENT [45], BN [38], and MEMO [50].
While they all focus on updating the model weights during the inference time, such as changing batch normalization statistics
or the scaling parameters in the batch-norm layer, GDA updates the input directly using the diffusion model. We compare our
GDA with three model-based adaptation baselines in Table 12, including TENT, BN, and Memo. For TENT and BN, they
adapt the models by input batches, which is different from GDA’s setting, as we do the single-sample adaptation. Therefore,
we set up the batch size for TENT and BN as 16. For Memo, the same as our single-sample adaptation setting, we set the
batch size as 1. We evaluate the accuracy on ResNet50 backbone for every corruption group for GDA and three baselines. As
Table 12 shows, compared to BN and Memo, GDA has a 0.3 to 2.7 points gain in robust accuracy. However, GDA is slightly
worse than TENT by 2.16 points.

Baseline details for model-based adaptation
• BN[38]: The model adaptation method aims to adjust the BN statistics for every input batch during the test-time. It requires

to adapt with single corruption type in every batch.
• TENT [46]: The method adapts the model by minimizing the conditional entropy on batches. In our experiment, we evaluate

TENT in episodic mode, which means the model parameter is reset to the initial state after every batch adaptation.
• MEMO [50]: The model adaptation method proposed in [50] alters a single data point with different augmentations (ie.,

rotation, cropping, and color jitter,...etc), and the model parameters are adapted by minimizing the entropy of the model’s
marginal output distribution across those augmented samples.

Standard BN [38] TENT [45] Memo [50] GDA (Ours)
Noise 28.85 31.14 35.75 32.61 37.03
Blur 30.45 28.79 33.63 34.31 32.4

Weather 42.99 44.81 49.65 44.93 46.5
Digital 50.45 51.39 56.53 53.76 50.98

Avg. 38.19 39.03 43.89 41.40 41.73

Table 12. Compare GDA with model-based adaptation baselines



9. Visualization

We visualize more saliency maps on different types of OOD. As Figure 7 and 8 shows, from left to right for every subfigure, the
first row is the original / corrupted, and adapted samples; the second row shows their corresponding Grad-CAM with respect
to the predicted labels. The red region in Grad-CAM shows where the model focuses on for target input. We empirically
discover the heap map defocus on the target object for corrupted samples. However, after adapting by GDA, the red region
of the adapted sample’s heap map is re-target on the similar region as original image, which demonstrates that the diffusion
indeed improves the input adaptation and makes the model refocus back on the correct regions.

Figure 7. GradCam Visualization on ImageNet-Stylized

Figure 8. GradCam Visualization on ImageNet Rendition and Sketch



(a) Imagenet-Sketch

(b) Imagenet-Rendition

(c) Imagenet-Stylized

Figure 9. More GDA visualization for different OOD benchmarks, including Sketch, Rendition, and Stylized-ImageNet. We show that GDA
not only can effectively guide the samples back to the source domain but also can visually change the sample with visual effects, such as
colorizing the sketch images, background removing for painting-style samples, and object highlighting for stylized samples.


	. Implementation Details
	. More Experimental Results
	. ImageNet-C Detailed Results
	. Compare with Input-based Adaptation
	. Compare with Model-based Adaptation

	. Visualization

