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1. Overview
This supplementary material first provides an expanded no-
tation table used in this work. Following this, more detailed
information is presented for enhanced clarity, including ad-
ditional experimental results and implementation details.
Lastly, more qualitative comparisons are shown to demon-
strate the capabilities of the proposed framework.

2. Notation Table
Table 1 presents the notations used in the main text and their
corresponding definitions.

3. Detailed Analyses
This section analyzes the design flexibility of our latent
module in arbitrary-scale super-resolution (SR) tasks and
demonstrates the visual effects of employing different ob-
jective functions.

Design flexibility in Arbitrary-scale SR tasks. In the
main paper, we present the arbitrary-scale SR results of our
proposed framework, which employs UNet [12] as the la-
tent generator. To further validate the design flexibility of
our latent module, we provide results in arbitrary-scale SR
tasks using EDSR-baseline [8] and Swin Transformer [9]
(Swin-T) as alternative latent generators. This analysis in-
cludes two variants of our model: EDSR-baseline-LINF-
LP and RRDB-LINF-LP, which facilitates a comprehensive
comparison. For clarity, we denote them as EDSR-baseline-
Ours and RRDB-Ours, respectively. The results in Table 2
demonstrate that our framework achieves promising results
with all these backbones as the latent generator, proving the
flexibility of our framework in arbitrary-scale SR tasks.

Visual Effects with Different Objective Functions. Fig-
ure 1 demonstrates the qualitative results obtained by train-
ing our latent module using different objective functions.
As shown in this figure, our framework generates sharper
content when employing the perceptual loss, in contrast to
the smooth but blurry results with the latent space loss. In

Figure 1. A qualitative comparison between the effects of employ-
ing different objective functions. “Latent” represents the exclusive
use of latent space loss, while “VGG” denotes the sole employ-
ment of VGG perceptual loss [5].

addition, our framework effectively mitigates the grid arti-
facts presented in image produced by an LINF [14] model.

4. Implementation Details
In this section, we illustrate the derivation of the “best tem-
perature map” and additional details of SRFlow-LP.

Best Temperature Map. We adapt the derivation of the
“Optimal Objective Estimation” in SROOE [13] to generate
our “best temperature map”. Specifically, for each image,
we generate a total of 21 outcomes using an LINF model,
with sampling temperatures ranging from 0 to 1 at intervals
of 0.05. Then, for every pixel in each image, we compute
the LPIPS [16] values and select the temperature that yields
the optimal LPIPS from these 21 images. Once the opti-
mal temperature for every pixel is determined, we assemble
these selections to form a “best temperature map”. Note
that in [13], they search a t value as a conditional input to
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Table 1. The notations used in this study and their corresponding definitions.

Notation Definition

N The size of a dataset.

x Low-resolution image.

xup Bilinear upsampled low-resolution image.

y High-resolution image.

ŷ High-resolution image generated by the flow model.

m The residual map between y and xup.

z A latent code in a standard normal distribution (i.e., z ∈ N (0, I)).

fθ Pre-trained flow-based super-resolution model [10, 14], which is parameterized by θ.

τ The sampling temperature (i.e., the standard deviation of a Gaussian distribution).

s The scaling factor.

c The coordinate of a patch [14].

n The size of a patch [14].

G The proposed latent module.

ẑ The learned prior generated by G.

z∗ The latent code corresponding to the ground truth image y, transformed by fθ .

Llatent The L1 loss calculated between z∗ and ẑ.

Lpercep The perceptual loss [5] calculated between y and ŷ.

Ltotal The final objective function.

Ψper A pre-trained VGG19 [6] network.

Table 2. The arbitrary-scale SR results on SR benchmark datasets. The names in the parentheses (e.g., UNet) refer to the architecture of our
latent generator. “In-scales” and “OOD-scales” refer to in- and out-of-training-distribution scales. LPIPS [16] scores are reported (lower
is better), with the best and second-best highlighted in red and blue, respectively.

Set5 [1] Set14 [15] B100 [11] Urban100 [4]

Method In-scales OOD-scales In-scales OOD-scales In-scales OOD-scales In-scales OOD-scales

×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8 ×2 ×3 ×4 ×6 ×8

EDSR-baseline-MetaSR [3] 0.057 0.125 0.175 0.253 0.326 0.094 0.207 0.286 0.395 0.460 0.147 0.285 0.376 0.492 0.565 0.065 0.157 0.233 0.352 0.446

EDSR-baseline-LIIF [2] 0.056 0.124 0.173 0.248 0.307 0.093 0.205 0.284 0.390 0.449 0.147 0.282 0.372 0.486 0.556 0.064 0.155 0.228 0.338 0.422

EDSR-baseline-LTE [7] 0.056 0.123 0.174 0.257 0.326 0.092 0.203 0.283 0.396 0.463 0.146 0.280 0.371 0.495 0.570 0.063 0.152 0.224 0.345 0.436

EDSR-baseline-LINF [14] (τ = τ0) 0.035 0.067 0.088 0.158 0.249 0.064 0.115 0.163 0.275 0.375 0.108 0.172 0.207 0.319 0.451 0.050 0.110 0.158 0.273 0.386

EDSR-baseline-Ours (EDSR-baseline) 0.026 0.051 0.072 0.157 0.276 0.052 0.097 0.147 0.269 0.390 0.083 0.132 0.177 0.304 0.440 0.043 0.097 0.144 0.260 0.388

EDSR-baseline-Ours (UNet) 0.026 0.047 0.074 0.145 0.243 0.054 0.094 0.144 0.253 0.364 0.084 0.127 0.177 0.289 0.425 0.440 0.098 0.146 0.253 0.377

EDSR-baseline-Ours (Swin-T) 0.029 0.053 0.073 0.149 0.277 0.055 0.100 0.141 0.252 0.379 0.090 0.135 0.176 0.287 0.422 0.043 0.097 0.141 0.251 0.382

RRDB-LINF [14] (τ = τ0) 0.034 0.064 0.084 0.147 0.247 0.059 0.110 0.146 0.252 0.359 0.097 0.152 0.194 0.306 0.444 0.040 0.093 0.137 0.239 0.354

RRDB-Ours (EDSR-baseline) 0.025 0.044 0.066 0.136 0.249 0.046 0.087 0.129 0.230 0.329 0.069 0.118 0.165 0.272 0.385 0.035 0.082 0.126 0.230 0.352

RRDB-Ours (Unet) 0.023 0.042 0.066 0.131 0.234 0.043 0.087 0.124 0.221 0.322 0.061 0.113 0.163 0.264 0.378 0.033 0.081 0.126 0.219 0.331

RRDB-Ours (Swin-T) 0.025 0.045 0.063 0.129 0.247 0.046 0.086 0.123 0.223 0.328 0.071 0.115 0.162 0.267 0.383 0.034 0.080 0.123 0.221 0.343



their GAN model, while in our approach, the temperature τ
represents the standard deviation of a Gaussian distribution.

SRFlow-LP Implementation Details. We found that em-
ploying the latent space loss as a regularization term
for training SRFlow-LP effectively prevents exploding in-
verses. This effectiveness stems from the observation that
models trained with the latent space loss tend to produce la-
tent codes that fall within the training distribution, therefore
avoiding subsequent exploding inverses. To further stabilize
the inference process of SRFlow-LP, the initial prior is nor-
malized before being processed by the latent module. In ad-
dition, we skip the iteration which encounters an exploding
inverse during training. These techniques allow SRFlow-LP
to be more stable during both training and inference with-
out modifying the architecture or inference pipeline of the
proposed framework.

5. Additional Qualitative Results
5.1. Qualitative Results of SRFlow-LP

Figs. 2 and 3 demonstrate our SRFlow-LP generates im-
ages with sharper details than the original SRFlow [10].
Fig. 4 also presents that SRFlow-LP effectively prevents
SRFlow from encountering exploding inverses that display
noisy patches within images.

5.2. Qualitative Results of LINF-LP

Fig. 5 illustrates that our LINF-LP mitigates the grid arti-
facts in images generated by LINF [14], especially in areas
with thin, repetitive linear structures.
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Figure 2. A qualitative comparison between the 4× SR results of SRFlow [10] and our SRFlow-LP.



Figure 3. A qualitative comparison between the 4× SR results of SRFlow [10] and our SRFlow-LP.



Figure 4. Our framework SRFlow-LP effectively prevents SRFlow [10] from encountering exploding inverses.

Figure 5. A qualitative comparison between images generated by LINF [14] and LINF-LP.
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