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1. Evaluation Metrics
In the experiment section of the manuscript, various

evaluation metrics are used to assess different methods. In
this section, we give a detailed calculation of these metrics.
The relative rotation error (RRE) and relative translation an-
gle error (RTAE) are computed as
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tr(RpreR

T
gt)− 1

2
(1)

RTAE = arccos
tTpretgt

∥tpre∥2∥tgt∥2
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where (Rpre, tpre) is the estimated relative pose and
(Rgt, tgt) is the ground truth. tr(·) computes the trace of
a matrix. Since the relative translation obtained from the
image has scale singularity, a direct comparison between
the scale of the predicted relative translation and the scale
of ground truth is unreliable and cannot measure the effec-
tiveness between different methods. Thus, the relative scale
error (RSE) is computed as

RSE =
s∥tpre∥2 − ∥tgt∥2

∥tgt∥2
, (3)

where s is a scaling factor to make the estimated scale as
close as possible to the true scale. s is not a constant number
and it is computed as
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Here, n is the number of total validation pairs, ∥itpre∥ and
∥itgt∥ is the estimated relative translation and ground truth
relative translation of i-th pair, respectively. After an epoch
of training, the relative translation of the network output
will change, and therefore the scaling factor s will also
change.

As for the global pose error, the predicted poses are
aligned with the ground truth before evaluation. The com-
putation of absolute rotation error (ARE) is the same as
RRE (Eq. (1)) and the difference is that (Rpre,Rgt) is the
estimated global rotation and the ground truth. The absolute
translation error (ATE) is computed as

ATE = ∥tpre − tgt∥22 . (5)

Here, (tpre, tgt) is the estimated global translation and the
ground truth.

2. Details of Datasets

In this section, we give more detail of the datasets used in
the experiment, namely PanoSUNCG, Mapillary Metropo-
lis, 360VO, Building, and Campus. PanoSUNCG and
360VO are synthetic datasets for indoor and outdoor en-
vironments, respectively. Mapillary Metropolis dataset is
collected in real-world scenes. However, this dataset has a
limitation because it samples images uniformly at a fixed
distance of 6 meters, resulting in a sparsely connected pose
graph that makes absolute pose estimation challenging. To
address this limitation, we have collected our own datasets
using an Insta 360 ONE X2 panoramic camera, named
Building and Campus datasets. The visualization of these
datasets is shown in Fig. 1, where the first and third rows
are the RGB images, and the second and fourth rows are the
corresponding depth images. The depth map of the 360VO
dataset is not available and we use NA to represent it. Fig. 2
shows the camera trajectory of the different datasets. Since
PanoSUNCG and 360VO datasets have multiple scenes, we
only show one of them.

3. Additional Experiment Result

In this section, we demonstrate the additional experi-
mental results of our PanoPose, in terms of relative pose
and depth estimation.

3.1. Relative Pose Estimation Result

On the 360VO dataset, sequences 1, 4, and 9 are used for
relative pose evaluation. Due to the space limitation, only
the results from sequence 1 are reported in the manuscript.
In this section, we present the relative pose estimation result
on 360VO-Seq4 and 360VO-Seq9 in Tab. 1. From the table,
it is clear that the traditional five-point method [2] achieves
the best result in relative rotation estimation (RRE) and rel-
ative translation direction estimation (RTAE). However, the
five-point method is unable to estimate the scale of relative
translation, thus leading to the largest RSE in all methods.
Our PanoPose outperforms other self-supervised methods
in most evaluation metrics. An exception is the mean RSE
on 360VO-seq4, where PanoPose’s error is only 0.03 higher
than the best result, achieving the second-best in learning-
based methods.

3.2. Cross-data Generalization

In this section, we demonstrate the generalization ability
of our PanoPose by training and testing the network with
various datasets, as summarized in Tab. 2.
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Figure 1. Visualization of the dataset used in the experiments. The first and third rows are the panoramic images. The second and the
fourth rows are corresponding depth maps, in which red indicates large depth and blue is small depth.
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Figure 2. Camera trajectory of different datasets.

Dataset Method Mean RRE Med RRE Mean RTAE Med RTAE Mean RSE Med RSE

360VO-Seq4

SfMLearner [6] 0.2195 0.0981 1.2846 0.8834 0.1498 0.0784
MonoDepth2 [1] 0.1612 0.1047 0.7302 0.4817 0.1577 0.0851

NonLocal-DPT [5] 0.1744 0.0992 0.5572 0.4211 0.2009 0.1135
BiFuse++ [4] 0.7986 0.1119 9.0365 4.0132 0.4031 0.2003
Five-point [2] 0.0383 0.0396 0.4238 0.2027 2.0326 0.4711

PanoPose 0.0656 0.0626 0.4809 0.3316 0.1770 0.0775

360VO-Seq9

SfMLearner [6] 0.4891 0.2588 4.5872 0.9805 0.3187 0.1559
MonoDepth2 [1] 0.2263 0.1532 3.8979 0.4528 0.2296 0.0949

NonLocal-DPT [5] 0.2514 0.1765 3.0507 0.8773 0.3097 0.2138
BiFuse++ [4] 0.5993 0.1312 2.3713 1.1305 0.3313 0.0937
Five-point [2] 0.1133 0.0791 3.1101 0.3642 2.1149 0.4426

PanoPose 0.1833 0.1219 2.9274 0.4302 0.2181 0.0834

Table 1. Relative pose estimation error. The unit of relative rotation error (RRE) and relative translation angle error (RTAE) is degree, and
relative scale error (RSE) is unitless. The best result is shown in bold and the second best is shown with under line.

From the table, it is evident that PanoPose exhibits gen-
eralization capabilities in relative rotation estimation. It
outperforms other methods in both mean RRE and me-

dian RRE across most dataset combinations. Notably, the
only exceptions are when trained on the Campus dataset
and evaluated on the Building and Mapillary Metropolis



T. Dataset E. Dataset Method Mean RRE Med RRE Mean RTAE Med RTAE Mean RSE Med RSE

Mapillary
Metropolis

Building

SfMLearner [6] 1.8728 0.6991 168.2549 172.5138 0.4867 0.4236
MonoDepth2 [1] 1.9971 0.7209 173.3312 175.1398 0.4899 0.4147

Bifuse++ [4] 2.0330 0.8648 175.8732 176.7391 0.4546 0.3029
PanoDepth 0.7531 0.5581 149.0472 151.3470 0.4543 0.3020

Mapillary
Metropolis

Campus

SfMLearner [6] 1.2987 0.6774 8.9657 6.2198 278.2934 0.3593
MonoDepth2 [1] 1.0625 0.4298 7.5949 5.0971 145.7589 0.3801

Bifuse++ [4] 1.3831 0.9700 7.9631 6.1899 387.6580 0.3456
PanoDepth 0.5458 0.4121 3.9245 2.0934 201.5932 0.3335

Mapillary
Metropolis

PanoSUNCG

SfMLearner [6] 15.8735 11.2958 50.9814 45.9223 4.3297 0.4394
MonoDepth2 [1] 16.4948 12.6478 48.0064 45.0384 4.3719 0.4409

Bifuse++ [4] 16.5660 12.8155 8.8364 4.6106 2.7913 0.3626
PanoDepth 8.6318 2.2702 8.3023 5.6434 3.6319 0.3755

PanoSUNCG Building

SfMLearner [6] 1.3758 1.1867 173.8752 175.9671 0.6786 0.3492
MonoDepth2 [1] 1.2936 1.0596 172.8793 174.0039 0.6297 0.3557

Bifuse++ [4] 1.1450 0.9810 174.0099 174.8455 0.3293 0.2519
PanoDepth 0.7244 0.4339 93.0434 96.5969 0.7734 0.5003

PanoSUNCG Campus

SfMLearner [6] 0.8816 0.6729 4.8551 2.5934 5.6829 0.4365
MonoDepth2 [1] 0.9145 0.7354 4.9385 2.7738 5.5644 0.4159

Bifuse++ [4] 1.2086 0.8214 5.2916 3.2601 187.9531 0.3806
PanoDepth 0.6490 0.4597 7.7042 4.4586 21.2679 0.5890

PanoSUNCG
Mapillary
Metropolis

SfMLearner [6] 2.4873 1.2550 4.2543 2.3491 0.4294 0.3927
MonoDepth2 [1] 2.4178 1.1610 4.1021 2.2534 0.4960 0.3524

Bifuse++ [4] 2.6883 1.3865 3.7817 2.0923 0.3199 0.2807
PanoDepth 1.8237 0.6495 3.9221 2.1309 0.4133 0.2423

Campus Building

SfMLearner [6] 1.6728 0.7381 173.2588 173.8723 0.3869 0.3594
MonoDepth2 [1] 1.5945 0.7138 174.43263 174.8271 0.3946 0.3618

Bifuse++ [4] 1.8882 0.6196 174.9197 175.1363 0.3078 0.2217
PanoDepth 0.8816 0.7100 51.9322 49.8283 0.4638 0.2928

Campus PanoSUNCG

SfMLearner [6] 16.9816 13.0087 11.3654 5.9156 5.3394 0.4638
MonoDepth2 [1] 16.5622 12.7941 10.1081 5.5776 5.1357 0.4332

Bifuse++ [4] 16.4711 12.6300 9.5208 5.1788 5.3989 0.4140
PanoDepth 13.3785 7.2264 72.7482 71.5257 4.8017 0.3847

Campus
Mapillary
Metropolis

SfMLearner [6] 3.4874 0.9005 4.2564 2.2837 0.3956 0.3795
MonoDepth2 [1] 3.3949 0.8472 4.0109 2.4365 0.3486 0.2977

Bifuse++ [4] 3.2004 0.6091 3.9176 2.7633 0.2177 0.1740
PanoDepth 2.6575 0.6915 115.4759 115.7581 0.1117 0.0893

Table 2. Generalization ability across different datasets. T. Dataset and E. Dataset represent the dataset for training and evaluating,
respectively. The best results are shown in bold.

datasets. In these cases, PanoPose achieves the second-
best median RRE. Regarding relative translation angle
error (RTAE), it is observed that all methods, includ-
ing PanoPose, generate large errors. In the Building
dataset, the RTAE of competitive methods approaches 180◦.
Such a high error suggests that the direction of the pre-
dicted relative translation is almost inverse to the ground
truth. PanoPose performs better than other methods on
this dataset, but its RTAE is still relatively high. On the
other hand, PanoPose generates large RTAE when train-
ing on Campus and evaluating on PanoSUNCG and Mapil-

lary Metropolis. Focusing on the relative scale error (RSE),
we observed that all methods yield large errors, except for
PanoPose training on Campus and evaluating on Mapillary
Metropolis (last row in Tab. 2). This indicates the poor gen-
eralization ability in relative translation scale estimation.

From Tab. 2, we can observe that the network general-
izes better in estimating relative rotation than relative trans-
lation. In most experiments, relative rotation errors are
lower than relative translation errors. We attribute this phe-
nomenon to the relatively short baselines between the input
images. In situations with limited baseline distances, tradi-



Dataset Method MRE ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

PanoSUNCG

SfMLearner [6] 0.2379 0.6115 0.4920 0.7211 0.7808 0.8182
MonoDepth2 [1] 0.2047 0.7313 0.2663 0.7908 0.9111 0.9564

NonLocal-DPT [5] 0.1864 0.7010 0.2547 0.8127 0.9136 0.9567
BiFuse++ [4] 0.1176 0.4321 0.0790 0.8974 0.9546 0.9773

PanoPose 0.1578 0.5773 0.2051 0.8469 0.9341 0.9622

Metropolis

SfMLearner [6] 0.2478 6.2927 0.3264 0.6481 0.8654 0.9396
MonoDepth2 [1] 0.2345 6.2108 0.3179 0.6508 0.8705 0.9430

NonLocal-DPT [5] 0.2546 6.8725 0.3521 0.5933 0.8387 0.9281
BiFuse++ [4] 0.1999 5.6440 0.2773 0.7309 0.9047 0.9586

PanoPose 0.2068 5.7837 0.2871 0.7173 0.8965 0.9550

Table 3. Depth estimation error. The best result is shown in bold, and the second-best is shown with under line. ↑ indicates that the higher
the result, the better. ↓ is just the opposite.

tional geometric methods also exhibit a similar trend, where
relative rotation estimation tends to be more accurate than
relative translation. This can be explained by the fact that
the reprojection error of 3D points is inherently more sen-
sitive to changes in rotation, prompting a greater emphasis
on optimizing rotation parameters during the pose optimiza-
tion process. The process of utilizing a network to estimate
relative pose can be viewed as the alignment of two images,
which is also more sensitive to rotation. Consequently, the
neural network exhibits superior performance in estimating
relative rotation as compared to relative translation. Our
PanoPose has better relative rotation estimation than other
competitive methods, and we attribute it to the larger re-
ceptive field of transformers than CNN and the proposed
rotation-only pre-training strategy. Generally, we believe
that the current network for relative pose estimation based
on self-supervision does not generalize well. To address this
limitation, augmenting the training dataset with additional
data may prove to be a crucial step.

3.3. Depth Estimation Result

Our PanoPose consists of a pose-net and a depth-net.
While most of our experiments focus on pose estimation, in
this section, we compare our depth estimation result against
other self-supervised methods on PanoSUNCG and Map-
illary Metropolis. We use the standard depth evaluation
protocols, including mean relative error (MRE), root mean
square error (RMSE), root mean square log error (RM-
SElog), and relative accuracy measures (δ). Before evalua-
tion, the estimated depth map is aligned with ground truth
using the median depth, which can be expressed as

D̂pred = Dpred ·
Med(Dgt)

Med(Dpred)
. (6)

Here, Dpred and Dgt are the predicted depth map and
ground truth, D̂pred is the aligned predicted depth, and
Med(·) is computing the median value of a matrix. The

depth evaluation result is summarized in Tab. 3. From the
table, it is clear that BiFuse++ exhibits the best depth es-
timation performance in both datasets and our PanoPose
achieves the second-best result. Comparing Tab. 1 in the
main text and Tab. 3 in the supplementary material, we can
observe that the accuracy of relative pose estimation and
depth estimation do not improve simultaneously. Across the
experiment datasets, BiFuse++ reduces depth error by 15%
compared to PanoPose, but PanoPose reduces relative rota-
tion and relative translation angle errors by 80% and 62%
compared to BiFuse++. This indicates that PanoPose is
slightly weaker in depth estimation compared to BiFuse++,
but it significantly outperforms BiFuse++ in relative pose
estimation. This phenomenon underscores the effectiveness
of the pose-net structure we have designed and the rota-
tion only pre-training strategy in enhancing the accuracy of
scaled relative pose estimation, which is a crucial aspect of
the SfM problem.

3.4. Different Depth-net

In our proposed PanoPose, the depth-net is based on a
ResNet-18 backbone. In this experiment, we explore the
impact of different backbone architectures on the depth-
net and assess their performance in terms of depth estima-
tion and relative pose estimation accuracy. The results are
summarized in Tab. 4. For this experiment, we consider
four distinct ResNet architectures: ResNet-18, ResNet-
34, ResNet-50, and ResNet-101. Furthermore, we ex-
plore the transformer-based depth-net architectures. Thus,
PanoFormer[3], which is a network designed for panoramic
image depth estimation, is selected as the depth-net. Addi-
tionally, we experiment with an alternative approach where
we employ the Croco backbone network for both depth es-
timation and relative pose estimation simultaneously. In
Tab. 4, this setup is denoted as “Croco”. In essence, it
dispenses with the use of an independent depth-net and in-
stead relies on the features generated by Croco for both



Dataset Backbone MRE Mean RRE Med RRE Mean RTAE Med RTAE Mean RSE Med RSE

PanoSUNCG

ResNet-18 0.1578 0.1559 0.0560 0.4253 0.2874 1.2295 0.0115
ResNet-34 0.1528 0.6736 0.3322 2.9858 1.8511 6.4084 0.0818
ResNet-50 0.1689 0.2291 0.1740 0.6399 0.3877 7.6150 0.0154

ResNet-101 0.6879 16.8719 12.7980 83.3537 84.0831 4.3481 0.3650
PanoFormer[3] 0.1400 0.2731 0.1371 0.7220 0.4752 7.3984 0.0298

Croco 0.6074 16.5305 12.7444 9.3661 5.3680 4.3150 0.3764

Mapillary
Metropolis

ResNet-18 0.2068 1.7228 0.2683 1.7661 0.4006 0.0217 0.0101
ResNet-34 0.5156 2.5370 0.2770 2.3079 0.5412 0.1074 0.0456
ResNet-50 0.5681 2.6718 0.2987 2.2058 0.3406 0.0522 0.0384

ResNet-101 0.3715 2.2884 0.2273 2.2953 0.5356 0.1061 0.0418
PanoFormer[3] 0.6745 3.2925 0.7058 6.1243 4.6472 0.0389 0.0268

Croco 0.6140 3.2656 0.6626 26.0129 11.6665 0.4056 0.3540

Building

ResNet-18 0.1061 0.2009 0.1427 0.4653 0.3892 0.0935 0.0733
ResNet-34 0.4006 1.6412 0.4846 22.2070 1.4090 0.4566 0.3495
ResNet-50 0.4858 2.1615 0.9891 3.1206 1.5235 0.4084 0.3238

ResNet-101 0.4237 1.7336 0.6091 10.1709 1.5105 0.4240 0.3461
PanoFormer[3] 0.5401 1.5849 0.4528 1.3362 0.7363 0.1231 0.0788

Croco 0.5056 0.3956 1.7267 1.1607 0.4024 0.3749 0.4682

Campus

ResNet-18 0.0979 0.1094 0.0862 2.2683 0.4644 0.2563 0.0519
ResNet-34 0.1965 0.8868 0.3986 5.1364 0.6287 0.6619 0.1136
ResNet-50 0.2219 0.9300 0.4145 4.3781 0.6501 0.7187 0.1568

ResNet-101 0.3791 0.6741 0.2712 8.9667 0.8924 1.1539 0.2517
PanoFormer[3] 0.8724 1.0029 0.4178 2.5871 0.7609 8.9828 0.0803

Croco 0.4592 0.8703 0.4481 2.5200 0.6685 2.0695 0.3740

Table 4. Depth estimation error and relative pose estimation error with different backbone. For brevity, only MRE (mean relative error) is
used for depth evaluation. The best result is shown is bold.

depth prediction and pose estimation. From the table, it
is clear that using ResNet-18 as the backbone yields the
best result in most cases, except for the Mapillary Metropo-
lis dataset. In terms of depth estimation evaluation (as-
sessed by the MRE metric), from ResNet-18 to ResNet-
101, the depth estimation error grows larger as the backbone
becomes larger. Furthermore, introducing PanoFormer as
the depth-net generally results in larger errors compared
to ResNet-based networks, except for the PanoSUNCG
dataset. It can be attributed to PanoFormer’s training for
indoor depth estimation, which aligns with the indoor en-
vironment of the PanoSUNCG dataset, yielding improved
depth estimation results. Utilizing the Croco backbone for
both depth and relative pose estimation is also infeasible.
This configuration leads to significant errors, particularly
in the PanoSUNCG dataset, and results in the second-worst
depth estimation across the other three datasets. This exper-
iment shows that as the network becomes more complex,
the performance does not exhibit improvement but deteri-
orates. This can be attributed to the challenges of training
larger networks and the optimization is easy to fall into local
optima. Therefore, our depth-net uses the most lightweight
ResNet-18 as the backbone, ensuring network convergence
and reliable performance.
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