Supplementary Materials - MULAN: A Multi Layer Annotated Dataset for
Controllable Text-to-Image Generation

Petru-Daniel Tudosiu*! Yongxin Yang! Shifeng Zhang! Fei Chen'
Steven McDonagh? f Gerasimos Lampouras' Ignacio Tacobacci! Sarah Parisot*!

"Huawei Noah’s Ark Lab, ?University of Edinburgh

* equal contribution, T work done in part at Huawei Noah’s Ark Lab



Supplementary Materials - MULAN: A Multi Layer Annotated Dataset for
Controllable Text-to-Image Generation

Supplementary Material

1. Data Filtering models

In order to filter out failed decompositions, we train two
classifiers using our 5000 manually annotated decomposi-
tion results. The first classifier takes as input the original
image, inpainted background image and background inpaint-
ing mask. It is a three-way classifier separating successful
decompositions from background inpainting failures and
irrelevant decomposition. The second one operates at the
instance level, taking as input original image, background
inpainting mask, inpainted instance and instance alpha mask;
it is designed as a multiclass classifier identifying good de-
compositions, detection, segmentation and inpainting issues,
and truncated instances. Both classifiers are built using a
frozen pre-trained EfficientNet BO backbone [23], with the
exception of the first layer which is replaced to handle the
different input channel size. The background classifier sim-
ply trains a fully connected layer on annotated data using a
cross entropy loss.

For our instance level classifier, we adopt a more complex
strategy: our annotations are image level, while issues are
often encountered at the level of a single instance. Taking in-
spiration from Multiple Instance Learning (MIL) approaches
for weak supervision [21], we design a multilabel MIL clas-
sification task. Each decomposed image represents a bag of
instances, with a set of image level categories (good, segmen-
tation, detection, inpainting, truncated). For a given category,
a label of 1 indicates that at least one instance in this image
has this label, while O indicates that no instance has this
label. To train this model, we first compute individual in-
stance representations using our EfficientNet backbone, then
compute a joint image representation using a self-attention
mechanism across all image instances [21]. We then feed
this global feature vector to a learnable multi-label classifier
and train the model using an image-level cross entropy loss.

We train both models for 200 epochs with learning rates
2e3 (background) and 2e~® (instance) for a batch size of 16.
Our self attention layer has a single head, and dimension 512,
requiring an additional projection layer at the EfficientNet
output. For each classifier, we reserve 20% of annotated data
for validation purpose. Due to the class imbalance between
successful decomposition and rarer failure modes, we adopt
a square root sampling strategy [ 18] to train our background
classifier, sampling rare classes more often. Performance of
filtering models on the validation set is reported in table S1.
We report F1 scores, which are more accurate evaluators of
imbalanced classification results.
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Figure S1. Detailed depiction of the pipeline.

2. Pipeline Embodiment
2.1. Detailed implementation

A detailed schematic of our decomposition pipeline is avail-
able in Fig. S1. We provide additional implementation
details below.

Detection. A reimplementation of DetCLIP v2 [28] is used
with a SWIN-L backbone. We use an instance score thresh-
old of 0.25, and a Non Maximal Suppression threshold of
0.9. Our class list is attached to this Supplementary Material.

Segmentation. We use the Segment Anything VIT-h
Model [9] as our segmentation model. We use the Det-
CLIP v2 bounding box predictions as grounding inputs to
the model, and as post-processing, exclude instances whose
largest connected component is smaller than 20 pixels or 0.1
% of the whole image. This prevents errors in the matting
process (TriMap computation) associated with instance pixel
counts being too small

Weights found at on Meta Al Public Files.


https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth

Filtering Model ‘ Success label

Reject label

. . Background inpainting Irrelevant decomposition
Full image classifier 0.94 031 031
Instance classifier Segmentation Inpainting | Truncated instance ‘ Detection
0.96 0.88 \ 0.76 \ 0.90

Table S1. F1 scores measuring performance of data filtering models.

Depth Estimation. MiDaS v3.1 BEiTL-512 [20] is used
for its robustness and performance. The depth estimation
is quantised in bins of 250 relative depth units in order to
increase instance separability for the initial instance extrac-
tion. Images are resized to 512x 512 for depth estimation
precision.

Instance  Occlusion Ordering. We used the
InstaDepthNet>® [11] model to predict both an
initial depth ordering as well as an occlusion ordering. The
model is build on top of MiDaS v2.0 and takes as input the
instance segmentations generated by SAM.

Captioning. ViT-g FlanT5XL trained via the BLIP-2
paradigm [13] and further finetuned to produce COCO style
captions [14] is used to caption the instances, background
and intermediary layers. The captioning prompt that was
used is the one used during training “a photo of”. In order
to increase reproducibility, Beam Search is used with top
32 beams being kept in memory. Besides the 32 predicted
captions, the instance’s category name and the term “image”
for the background layer were added as candidate captions.
The best caption was then selected using a pretrained CLIP
model with VIT-L-patch14 backbone [19] based on the sim-
ilarity score between caption and image. Lastly, we used
LLaVa v1.5 7b [15] to generate detailed captions of the
background and the fully recomposed image in order to pro-
mote complex captioning based generation [3]. LLaVa was
not used on individual instances as it was hallucinating too
many details based on the instance’s appearance (e.g. per-
son’s pose). The captioning component takes as input the
instance extracted based on the SAM segmentation.

Inpainting. We use Stable Diffusion v1.5 for our inpaint-
ing task. We dilate bounding boxes by a 0.1 ratio of image
size, and crop the input image within the dilated bounding
box. This cropped image is used as input to the inpaint-
ing model. Inpainting masks are dilated as well using a
Guassian blur filter with o = 7. The difference in sigma

Weights found on GitHub.

Weights found on HuggingFace.
Weights found on HuggingFace.
Weights found on HuggingFace.

is required to guarantee that for the background inpainting
instance contents such as hairs are presents. The area within
the inpainting mask is filled with a constant value based on
the image content .

Inpainting is carried out with 50 timesteps. After in-
painting, the cropped area is reintroduced and merged with
original image pixels according to the inpainting mask. This
reduces content degradation, notably from VAE encoding-
decoding. To ensure smooth merging, we dilate inpainting
masks and soften mask edges using gaussian blur.

For background inpainting, we use the same prompt
across all images: “an empty scene” and the following
negative prompts: “complex, text, distortions, poor quality,
crowded, non-uniform, item, main subject, large object, fore-
ground object, foreground, heterogeneous, man, woman”.
We additionally append all detected category names in each
image to the negative prompts.

For instance inpainting, we use estimated captions as
prompt and the following negative prompts: “complex, text,
poor quality, distortions, crowded, bad anatomy, deformed,
missing arms, missing hands, missing legs, extra arms, extra
legs, NSFW, nsfw, tiling, bad proportions, cropped, unnat-
ural pose, fused fingers, missing fingers”. We additionally
append all detected category names (that do not pertain to the
instance of interest) in each image to the negative prompts.

Matting. We use ViT-Matte [26] finetuned on Composi-
tion 1K together with SAM, following the Matte Anything
approach [27]. We resize the mask predicted by SAM to
256 %256, and use the dilated bounding box as grounding.
Then the mask is both eroded and dilated with a kernel size
of 2 for 2 iterations in order to automatically generate a
TriMap. The dilation and erosion are conservative in order
to preserve small instances. We then use ViT-Matte to pre-
dict the Alpha channel based on the inpainted instance image
and the TriMap. All values below 0.1 are set to O to delete
the sporadic alpha noise. Then a matting mask is generated
from the alpha channel by binarising it. This matting mask
is used to extract the matted instance from its inpainted rep-
resentation. We have mainly done this due to the unreliable
nature of inpainting.

Based on Stable diffusion webui.
Weights found on Google Drive.


https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt
https://huggingface.co/Salesforce/blip2-flan-t5-xl-coco/tree/main
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/liuhaotian/llava-v1.5-7b
https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/4afaaf8a020c1df457bcf7250cb1c7f609699fa7/modules/masking.py
https://drive.google.com/file/d/1mOO5MMU4kwhNX96AlfpwjAoMM4V5w3k-/view?usp=sharing

2.2. Instance Ordering

Algorithm. We generate our instance ordering in three
steps, relying on depth ordering and occlusion information
obtained in our decomposition step. First, instances are or-
dered based on their depth information, from further away to
closest (according to instance mean depth value). This can
easily be achieved using the instance depth graph, by com-
puting node outdegree: this computes the number of directed
edges departing a node, i.e. the number of instances that
are behind our node. Second, we rely our occlusion graph
to refine our ordering: if instance A occludes instance B,
instance B will systematically be ordered before instance A.
Finally, mutually occluded instances are reordered according
to their maximum depth value. In algorithm 1, we provide
an algorithmic overview of our instance ordering algorithm,
to facilitate reader comprehension.

Quantitative analysis. To assess the performance of our
novel ordering strategy, we ablate over its components and
use three metrics to evaluate image reconstruction quality:
LPIPS [30], SSIM [24] and MSE. LPIPS uses deep features
across multiple scales from the AlexNet [10] to measure the
similarity between a perturbed image and the ground truth
image, and was shown to align well with human evaluation
[30]. SSIM is a staple reconstruction metric used across
multiple domains. It is the holistic product of three local
dissimilarity factors, namely, luminance, variance, and cor-
relation. Finally we used MSE on both the whole image as
well the area covered by the background inpainting mask
(MSE Masked). All the metrics were calculated only on
images with strictly positive bounding box IoUs (i.e. with
overlapping instances).

We compare our ordering method to four baselines. First,
Reverse Decomposition is the reverse ordering used to extract
instances from the image, as detailed in Section 3.1-Instance
Extraction. Other baselines are ablations of our ordering
strategy and are equivalent to compound effects of the steps
from Algorithm 1. Depth Ordering sorts instances based
on their mean depth value, +Occlusion Resolution further
adjusts ordering based on occlusion information, +Mutual-
Occlusion Resolution integrates order correction based on
mutual-occlusion information and constitutes the complete
ordering process. All reconstructed images have alpha chan-
nels that have been predicted by the ViT Matte model. Fi-
nally, we further evaluate the impact of our occlusion aware
alpha estimation (+Occlusion Altered Alpha), where mutu-
ally occluded areas are set to be transparent.

Our depth based ordering achieves the worst reconstruc-
tion quality, highlighting the limitations of relying solely
on depth information. Second is our reverse decomposition
baseline, which relies on clustering and bounding box size
heuristics in addition to depth. Replacing these heuristics
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Figure S2. Scene distribution for successful and rejected decom-
positions, for both COCO and LAION datasets. Percentage of
accepted/rejected decompositions with respect to number of in-
stances (left), and number of categories (right) per image.

with occlusion and mutual occlusion based corrections fur-
ther improve reconstruction quality, with our final ordering
approach achieving the top performance. Finally, our occlu-
sion aware alpha estimation further improves image fidelity
by a noticeable margin. We additionally provide sub-dataset
specific results for our complete approach, showing that
MuLAn-LAION generally achieves better reconstruction
quality than MuLAn-COCO. We attribute this difference to
the higher image complexity of COCO dataset when com-
pared with LAION Aesthetic 6.5 (e.g. more single instance
scenes in MuLAn-LAION).

3. Dataset details
3.1. Usage

MuLAn is split into two subsets based on the original
datasets that are annotated. MuLAn-COCO consists of
16,034 images with 40,335 instances while MuLAn-LAION
consists of 28,826 images with 60,934 instances, for a sum
total of 44,860 images with 101,269 instances.

Additional dataset statistics Fig. S2 shows the percent-
age of successful and failed decompositions with respect to
the number of categories and instances in an image. Dif-
ferences in scene composition between both datasets are
highlighted in this figure: we can see that LAION has a
much larger distribution of simpler scenes (1-2 instances and
categories), while COCO has a more balanced distribution.
In both cases, percentages of successful decompositions de-
crease as the number of instances increase, highlighting the
challenge of handling the intricacies of complex scenes.

The complete distribution of categories in our dataset is
available in Fig. S4 (MuLAn-COCO) and Fig. S5 (MuLAn-
LAION). These figures additionally highlight which cate-
gories have the highest success and failure rates, showing
the proportion of accepted and rejected examples.

In addition, we evidence robust performance and an abil-
ity to generalise across a wide-range of image resolutions
and qualities as shown in Fig. S3, where we report the distri-
bution of image resolutions in our dataset.



Algorithm 1: Instance ordering procedure

Inputs: A non sorted list of instances N,

A list L” of maximum depth values per instance,
A graph GP = (N, EP) of relative depths, where e} € £ if instance i is in front of instance j (lower depth)

A graph GO = (N, £9) of relative occlusions, where ef; € £ if i occludes j

Output: N sorted in inpainting order

Depth based ordering

Compute node depth outdegree Vn € N: outdeg(n) =Y, |EL > Number of instances behind n
NS < Sort A by ascending outdegree value

Occlusion based ordering correction
For i =1to |NS| - 1:
Forj =i+ 1to |[N¥|:
if e} € £9 and €] ¢ £°:
NS« Swap(i, §)

Final adjustment: mutual occlusion
Fori=1to |NS|—1:
For j =i+ 1to |N¥|:
if ¢} € £9 and €, € £©:
if LD < LJD:
NS« Swap(i, §)

> Loop following current order A%
> Loop through instances inpainted after ¢

> Swap instances to inpaint occluded instance first

> mutual occlusion
> instance j is behind ¢ in terms of max depth value
> Swap instances to inpaint instance that is further away first

Ordering Logic ‘ Masked MAE | MAE | PSNR 1 SSIM [24] 1 LPIPS [30] J)
Reverse Decomposition ‘ 0~0173:|:0.0244 0.0157;5;0_0139 75~9795:|:5.2819 0~99975:|:0.00058 0.07203:0'0530
Depth Based 0~0177i00253 0.0158:“).0142 75-9391i5.3078 0-99974i0.00062 0.0723i0'0534
+ Occlusion Resolution 0.0169i0.0245 0.0156i0,0139 76.0262i5,2599 0.99976i0,0005g 0~0713i0.0523
+ Mutual-Occlusion Resolution 0.0166i0.0244 0'0155:t0.0138 76-0552:!:5.2406 0-99977i0.00058 0.0711:‘:0'0519
+ Occlusion Altered Alpha (ours) 0.0156i0'0229 0~0152i0.0133 76.1859i5'1706 0.99978i0'00054 0-0700i0.0507
MuLAn - COCO 0.0164+£0.0175 0.022140.0161 73.9121 +4 9423 0.9996940.00068 0.0881+0.0525
MuLAn - LAION 0.012149.0133 0.011540.0079 77~3296i4.4036 0.9998310.00019 0.066540.0494

Table S2. Evaluation of the instance ordering re-composition on 4400 LAION images. Masked MAE is MAE applied only on the recomposed
image region that was inpainted based on the inpainting mask of the background.
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Figure S3. Distribution of image resolutions in MuLAn-COCO and

MuLAn-LAION.

3.2. Format

The annotation files are inspired by the original COCO
dataset annotations, developed by the research community.
The annotation files contain a dictionary with metadata and
required elements to generate the MuLAn dataset given the
original images and the annotation file. We highlight that
we do not release original image content, and that the de-
composed images cannot be reconstructed without access to
the original data. The dictionary’s contents are outlined in
Listing 1.

Layers Layers are indexed from 0 to N with Layer O being
the background. For all layers we have released the masks
required to extract the original content from the original



Figure S4. Distribution of all instance categories in the MuLAn-COCO dataset.

Figure S5. Distribution of all instance categories in the MuLAn-LAION dataset.

image and the inpainted content that needs to be added to
the extracted one in order to obtain the layer.

Captions Each individual layer comes with a COCO style
caption generated by the FLAN T5-XL BLIP 2 style trained
model that was further finetuned on COCO styles [13]. We
note that those captions were selected by the CLIP model
[4] from 32 candidate captions together with “image” or
instance tag as default candidates.

For the background (Layer 0), the original image and the
recomposed image we have also released captions generated
by the LLaVa model in order to encourage the development
of generative models based on detailed natural language
captions [3]. The instances were not captioned with LLaVa
due to its ability to infer details that were not visible in the
instance itself but could be found in the original image. We
attribute this to the bias resulting from the position of the
instance and the gaps of cotent resulted from isolating the
instane to be captioned.

4. Dataset applications details

RGBA Image generation. The matting datasets that have
been used in finetuning the baseline SD v1.5 are outlined
in Table S3. We make use of 7 publicly available matting
datasets for a total 15,791 images (vs. 101,269 in MuLAn).

Instance addition. In order to assess the presence of the
new instance we used OWL-ViT 2 [17] similarly to the strat-
egy proposed by EditVal [1] for open-set instance detection,
and BLIP-2 [13] for visual question answering. For OWL-
ViT 2 we report average detection confidence of the detection
(in contrast with EditVal’s binary scores). For BLIP-2, we

Dataset Type Resolution  No. Instances
AIM-500 [12] Object 1397 x 1260 500
AM-2K [12] Animal 1471 x 1195 484
HIM-2K [22] Human 1823 x 1424 830
RWP-636 [29] Human 1038 x 1327 636
PPM-100 [8] Human 2997 x 2875 100
Composition 1K [25] | Varied Varied 481
UGD-12K [5] Human 357 x 317 12760

Table S3. Matting datasets used to train our RGBA generation
baseline.

report the percentage of images where the model’s answer
starts with “yes” to the following prompt: “Question: An-
swer with yes or no, is there a [instance description] in the
image? Answer:”. Following the InstructPix2Pix [2] eval-
uation, we keep the text guidance scale constant at 7.5 and
vary the image guidance scale between 1.0 and 2.2. Since
the EditVal instance addition edits do not include attributes
we created a small dataset of X edits following their example
where some of the edit prompts have attributes. This dataset
is the Attribute Test Set and it can be found on the project
website .

5. Choice of dataset

We chose to develop MuLAn based on LAION and COCO
datasets due to their pervasiveness within both the generative
modelling and computer vision communities. The LAION
Aesthetic 6.5 subset was specifically chosen due to an ap-
pealing compromise between cardinality, instance density,
scene style & content, and image quality. Due to ethical
concerns around fair-use of copyrighted content, we do not

Weights found on https://MulLAn-dataset.github.io/


https://MuLAn-dataset.github.io/

Listing 1. Description of our released annotations for a given decomposed image.

“annotation” : {
“captioning ”: {
”1lava”: LLaVa model details
”blip2”: BLIP 2 model details
”clip”: CLIP model details

}
“background”: {

”1lava”: Detailed background LLaVa caption

”blip2”: COCO style BLIP 2 background caption chosen by CLIP

“original_image_mask”: Original image background content mask

“inpainted_delta”: Additive inpainted background content
”image”: {

”1lava”: Detailed original image LLaVa caption

”blip2”: COCO style BLIP 2 original image caption chosen by CLIP.
“instances”: {

”blip2”: COCO style BLIP 2 instance caption chosen by CLIP.

“original_image_mask”: Original image instance content mask

“inpainted_delta”: Additive inpainted instance content

“instance_alpha”: Alpha layer of the inpainted instance

include content from original images, and release only our
results in annotation format, similar to COCO-based datasets.
As such, our data cannot be reconstructed without rightful
access to the original image content.

6. What did not work and why

In this section we exhaustively enumerate alternative ap-
proaches that were explored during our development and the
reasons we have chosen the current implementation over the
discussed alternatives.

Improvements to the SAM model: SAM-HQ and SEEM
We investigated alternatives to the SAM model, which is our
main cause of decomposition failures. We first considered
SAM-HQ [7], a model advertised as a global improvement
to SAM, notably capable of segmenting details (e.g. elon-
gated object, wires) more accurately. While we did observed
improvements and more precise segmentations for this type
of objects, we observed that SAM-HQ also had a higher
tendency to oversegment, leading to potentially reduced in-
stance extraction accuracy. We additionally considered the
SEEM model [31], which was particularly attractive due to
its ability to ground the segmentation using category names.
The model was however trained on COCO classes, and we
observed reduced performance, compared to SAM, for other

categories.

Grounded-SAM. We initially considered Grounded-SAM
to extract and segment instances. Grounded-SAM combines
Grounding-Dino [16], SAM [9] and Tag2Text [6] in order
to predict the instance tags, their bounding box and segmen-
tations. The sequence of three models (vs. two in our final
pipeline version) introduced additional unstability. Notably,
we used Tag2Text, an image tagger and caption predictor, to
identify instances in the images, and provided this list of tags
to the Grounding DINO detection model. We observed how-
ever that Tag2Text’s performance, while very high, was not
accurate enough to optimise Grounding DINO’s detection
performance. In contrast to DETCLIP, Grounding DINO
requires the exact list of instances present in the image, and
wrong tags can lead to detection of non-existent instances.
Ultimately, relying on a single model to detect and identify
instances in an image yielded a more robust and consistent
performance.

7. Failure modes: visual examples

In Figures S6-S12, we provide several visual examples for
all failure modes listed in Sec. 4 of the main paper: object
detection (Fig. S6), segmentation (Fig. S11), background
(Fig. S10) and instance inpainting (Fig. S8), irrelevant



decomposition (Fig. S12). Object detection can comprise
missing instances or double detections. The first affects in-
stance and background inpainting, as missed instances are
not included in inpainting masks. The second decomposes in-
stances into two or more subcomponents, which often leads
to segmentation artefacts. Segmentation limitations can be
linked to the SAM model (under or over-segmentation, seg-
mentation of the wrong area within the input bounding box,
checkerboard artefacts) or the VIT-Matte model used for al-
pha layer generation, typically involving over-segmentation.
Background issues typically involve introduction of novel
instances or structures inconsistent with the overall scene,
and text inpainting, despite the use of dedicated negative
prompts. This issue often arises when segmentation is im-
perfect, leaving small artifacts influencing the inpainting
process. Similarly, imperfect segmentation and shape priors
can influence instance inpainting, leading to failed recon-
struction of occluded areas.

We additionally illustrate limitations of our decomposi-
tion pipeline: background occlusions (Fig. S9) and bounding
box constrained inpainting (Fig. S7). The former occurs
because we treat the background as a single flat layer at the
bottom of the RGBA stack, while instances can be occluded
by background elements (e.g. tree branches, large structures).
The latter is a limitation of the SAM model, which requires to
input local information on where the instance to segment is.
We use a dilated version of the object bounding box as input,
as leveraging the inpainting mask can lead to segmentation
of irrelevant instances.

8. Additional Decomposition Results

Finally, in Figures S13-S16, we show additional visual re-
sults of RGBA decompositions in our MuLAn-LAION and
MuLAn-COCO datasets. We highlight the varied scenes,
image styles and categories.

9. Additional Dataset Application Results

We provide additional visual results for our dataset appli-
cation experiments. In Fig. S17, we report qualitative ex-
amples of our instance addition experiment, compared to
the InstructPix2Pix baseline on our attribute dataset. We
can see that we are able to consistently add the desired in-
stance, while at the same time preventing attribute leakage
and guaranteeing content preservation.

Fig. S18 provides additional results for our RGBA gen-
erator, compared to our Stable Diffusion baselines (origi-
nal model and model fine-tuned on matting datasets). Our
dataset’s diversity allows a better prompt understanding and
generation ability, with a better grasp of transparency. No-
tably, we note that our model trained on matting data tends
to include backgrounds in generated instances, and to set
black pixels in instances as transparent.

Figure S6. Visualisation of failure modes: object detection. We
show detected instance bounding boxes and affected instances/back-
ground image.

Figure S7. Visualisation of failure modes: bounding box re-
stricted instance completion. Left-right image pairs: original image-
instance with failure.



Figure S8. Visualisation of failure modes: instance inpainting. Left-right image pairs: original image-instance with failed inpainting.

Figure S9. Visualisation of failure modes: background occlusions. Green overlay is the estimated instance segmentation.



Figure S11. Visualisation of failure modes: segmentation. Green overlay is the estimated instance segmentation.

Figure S12. Visualisation of failure modes: irrelevant decomposition. Bounding boxees show detected objects in the image.



Figure S13. Visualisation of decomposed images from MuLAn-LAION. For each image, from left to right: original image, instance RGBA
image with green alpha overlay (top row); progressively reconstructed image by adding layer one by one (bottom row).



Figure S14. Visualisation of decomposed images from MuLAn-LAION. For each image, from left to right: original image, instance RGBA
image with green alpha overlay (top row); progressively reconstructed image by adding layer one by one (bottom row).



Figure S15. Visualisation of decomposed images from MuLAn-COCO. For each image, from left to right: original image, instance RGBA
image with green alpha overlay (top row); progressively reconstructed image by adding layer one by one (bottom row).



Figure S16. Visualisation of decomposed images from MuLAn-COCO. For each image, from left to right: original image, instance RGBA
image with green alpha overlay (top row); progressively reconstructed image by adding layer one by one (bottom row).
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Figure S17. Additional qualitative results of Instance Addition.

Image Guidance 2.0

ours Baseline

Image Guidance 2.2

ours Baseline




SDv1.5 finetuned on matting datasets

SDv1.5 finetuned on matting datasets

Stable Diffusion v1.5

RGB Image Alpha Mask RGB Image

Alpha Mask

Figure S18. Additional qualitative results of RGBA Generation.
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