
HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces

Supplementary Material

A. Color Distillation
We distill the MLP used to represent distance from our 256-
wide MLP to a 16-wide network during the finetuning stage
(Sec. 3.2). It is possible to further accelerate rendering by
similarly distilling the color MLP. We found this to provide
a significant boost in rendering speed (from 46 to 60 FPS)
at the cost of a minor but statistically significant decrease
in rendering quality (see Tab. 5). We observed qualitatively
similar results when decreasing width from 64 to 32 chan-
nels with more notable changes in color when decreasing
the width to 16 channels (see Fig. 9). As our initial results
suggest that MLP evaluation remains a significant rendering
bottleneck, replacing our scene-wide color MLP with a col-
lection of smaller, location-specific MLPs, as suggested by
KiloNeRF [28] and SMERF [7], is potential future work that
could boost rendering speed at a smaller cost in quality.

B. Anti-Aliasing
We model rays as cones [1] and use a similar anti-aliasing
strategy to VR-NeRF [38] by dampening high-resolution
grid features based on pixel footprint. For a given sample
x, we derive a pixel radius p(x) in the contracted space,
and calculate the optimal feature level L(x) based on the
Nyquist–Shannon sampling theorem:

L(x) := − log2(2s · p(x)), (7)

where s is our base grid resolution (128). We then multiply
grid features at resolution level L with per-level weights wL:

wL =


1 if L < ⌊L(x)⌋
L(x)− ⌊L(x)⌋ if ⌊L(x)⌋ < L ≤ ⌈L(x)⌉
0 if ⌈L(x)⌉ < L.

(8)

C. Model architecture
We render color and distance as follows:

c(x,d) = MLPcol(Γcol(x),SH(d)) (9)
f(x) = MLPdist(Γdist(x)), (10)

where Γcol and Γdist are separate spatial feature encodings:

Γ•(x) =
⊕

g∈{G•,T 1
• ,T

2
• ,T

3
• }

Lg−1∑
l=0

wl · g(x, l). (11)

Here, Lg is the number of levels in the 3D grid G• and
triplanes {T 1

• , T
2
• , T

3
• }, g(x, l) is the (interpolated) feature

vector at x for level l, wl is a per-level dampening weight for

64-Wide (46 FPS)

A
pa

rt
m

en
t

32-Wide (57 FPS) 16-Wide (60 FPS)

O
ff

ic
e 

1B
Ta

bl
e

Figure 9. Color Distillation. Distilling the color MLP to a smaller
width during the finetuning stage (Sec. 3.2) accelerates rendering
at the cost of a minor decrease in quality. We observe largely
similar results when decreasing the width to 32 channels, and more
noticeable changes in color when further decreasing to 16.

Table 5. Color distillation. We evaluate the effect of color MLP
distillation on the Eyeful Tower dataset [38], and find a significant
increase in rendering speed at the cost of quality.

Color Width ↑PSNR ↑SSIM ↓LPIPS ↑FPS

16-wide (distilled) 30.88 0.888 0.236 60.13
32-wide (distilled) 31.17 0.900 0.220 57.05
64-wide (original) 31.57 0.913 0.198 45.78

anti-aliasing (Eq. 8) and ‘
⊕

’ is concatenation. We encode
the direction d through spherical harmonics, SH(d), as an
auxiliary input to the color MLP (Eq. 9) that is independent
of the feature vector Γcol(x).

We use low-resolution 3D grids and high-resolution tri-
planes, as in previous work (MERF [29]) to obtain the best
rendering quality (Tab. 6). We double the grid resolution
between levels and therefore have a low-resolution 3D grid
with 3 levels (1283–5123) and higher-resolution triplanes
with 7 levels (1283–81923). Naı̈vely computing Eq. 11 re-
quires 3+3×7 = 24 texture fetches (we rely on the CUDA
texture API for hardware interpolation and do not need to
explicitly query voxel corners/texels). As a render-time op-
timization, we save pre-summed features g′L for each resolu-
tion level L (where we store g′L(v) =

∑L
l=0 g(v, l) for each

texel v in L), such that Eq. 11 can be rewritten as Γ(x) =⊕
g∈{G,T 1,T 2,T 3}[wLg

′
L(x) + (1 − wL)g

′
L−1(x)] for L=

L(x) (Eq. 7). Here, v refers to the texel (voxel). Querying
two levels requires only 2 + 3× 2 = 8 texture fetches.



Table 6. Grid feature layout. We measure the effect of using only 3D or triplane features on the Eyeful Tower dataset [38], and note a
significant drop in quality when compared to using both.

Pinhole Fisheye Overall

↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

3D Only 27.10 0.832 0.410 32.17 0.928 0.187 29.41 0.875 0.308
Triplane Only 28.24 0.843 0.312 33.16 0.938 0.150 30.47 0.886 0.238

Both 29.07 0.880 0.268 34.57 0.952 0.115 31.57 0.913 0.198

Table 7. Depth error on ScanNet++ [41]. Our distance-adjusted
Eikonal loss degrades geometric reconstruction less than other
alternatives used to render unbounded scenes.

Method ↓Distance (m) ↓Distance (%)

Uniform Eikonal loss (world space) 0.219 8.56
Uniform Eikonal loss (contracted space) 0.419 16.11
No Eikonal loss 0.996 29.93

Distance-adjusted Eikonal loss (ours) 0.221 11.13

D. Geometric Reconstruction
We evaluate geometric reconstruction on ScanNet++ [41]
(which has “ground-truth” laser scan depth only for fore-
ground pixels) in Tab. 7 for the strategies in Fig. 6. Using
uniform Eikonal loss in contracted space degrades accu-
racy (0.419 m error vs 0.219 m for uniform world space and
0.221 m with our distance-adjusted method) and omitting
Eikonal loss gives the worst results (0.996 m).

E. ScanNet++
We evaluate 9 scenes from ScanNet++ [41] in Sec. 4.3
(5FB5D2DBF2, 8B5CAF3398, 39F36DA05B, 41B00FEDDB,
56A0EC536C, 98B4EC142F, B20A261FDF, F8F12E4E6B, FE1733741F).
We undistort the fisheye DSLR captures to pinhole
images using the official dataset toolkit [42] to facilitate
comparisons against 3D Gaussian splatting [14] (whose
implementation does not support fisheye projection). We use
the official validation splits, which consist of entirely novel
trajectories that present a more challenging novel-view
synthesis problem than the commonly used pattern of
holding out every eighth frame [21]. The dataset authors
note that their release is still in the beta testing phase, and
that the final layout is subject to change. Our testing reflects
the dataset as of November 2023.

F. Societal Impact
Our technique facilitates the rapid generation of high-quality
neural representations. Consequently, the risks associated
with our work parallel those found in other neural render-
ing studies, primarily centered around privacy and security
issues linked to the deliberate or unintentional capture of
sensitive information, such as human facial features and ve-
hicle license plate numbers. Although we did not specifically

apply our approach to data involving privacy or security
concerns, there exists a risk, akin to other neural rendering
methodologies, that such sensitive data could become incor-
porated into the trained model if the datasets utilized are not
adequately filtered beforehand. It is imperative to engage in
pre-processing of the input data employed for model training,
especially when extending its application beyond research,
to ensure the model’s resilience against privacy issues and
potential misuse. However, a more in-depth exploration of
this matter is beyond the scope of this paper.


