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A. Supplementary Material

This supplementary section provides additional details
which could not be added in the main paper due to space
constrains, including: (1) additional implementation de-
tails, (2) additional quantitative experiments, (3) qualitative
results, (4) further ablation study, (5) details about compu-
tational complexity, and (6) comparison to state of the art
domain generalization techniques.

A.1. Additional Implementation Details

Each of our models are trained for 40K iterations for both
single-domain and multi-domain (G+S) generalization set-
tings. The dataset partitioning (training, validation and test
splits) strictly follow [1]. The re-implementations of other
methods also follow the same dataset partitioning. To en-
sure fair-comparison, [7] is also validated on the the Syn-
thia dataset partitioning of [1]*. The model saved at the last
iteration is used for all our analyses for out-of-domain and
in-domain performance. The probabilities p of all our per-
turbations (HRFP, HRFP+ and NP+) are empirically set to
0.5 where each probability is independent of another. In
short, the perturbations occur on independent probabilities.
For the style perturbation technique, the noise variance is
drawn from a Gaussian distribution of mean 1 and standard
deviation on 0.75. The batch size was kept as 16 for all the
experiments that used GTAV dataset as the source-domain
data. In the case of Synthia dataset being the source domain
data, the batch size was kept as 8. All experiments with
multi-domain generalization setting was conducted with the
batch size being 8. All models are trained and tested on
Nvidia RTX A6000 GPU.

†Equal contribution of authors.
*RobustNet data partitioning: http://github.com/shachoi/

RobustNet/blob/main/split_data/synthia_split_val.
txt

A.2. Quantitative Results

Table 1 presents the out-of-domain (OOD) performance of
MRFP when trained on the Synthia dataset. MRFP im-
proves on the baseline and outperforms other state-of-the-
art DG methods by approximately 2% and 1% respectively
showcasing the wide applicability of the technique for sim-
2-real DG. Table 2 and Table 3 show the source domain per-
formance on GTAV(G) and Synthia (S) simulated datasets
respectively. Although a performance drop of 1.75% on av-
erage is observed in source domain performance compared
to the baseline, it is not a major concern, as the overall gen-
eralization ability on all real-world datasets is improved sig-
nificantly. Table 4 displays the wide applicability of the
proposed MRFP technique as a plug-and-play module as
it improves the OOD performance of a different segmen-
tation network(in this case U-Net [9] with ResNet50 as the
encoder backbone), without any additional tuning of the hy-
perparameters by 2.29%.

Models (S) B C M G Avg

Baseline 20.83 27.95 24.06 29.81 25.66

IBN-Net [6] † 21.12 27.09 22.94 27.38 24.63

ISW [1] † 22.66 29.92 25.44 28.30 26.58

WildNet* † [5] 20.76 27.54 24.65 29.73 25.67

MRFP (Ours) 25.68 27.89 25.98 30.50 27.51

Table 1. Performance comparison of domain generalization meth-
ods using ResNet50 backbone, in terms of mIoU. Models are
trained on S → {B, C, M, G }. †denotes re-implementation of
the method. * indicates that the external dataset(i.e., ImageNet)
used in WildNet is replaced with the source dataset for fair com-
parison. The best result is highlighted, and the second best result
is underlined.

http://github.com/shachoi/RobustNet/blob/main/split_data/synthia_split_val.txt
http://github.com/shachoi/RobustNet/blob/main/split_data/synthia_split_val.txt
http://github.com/shachoi/RobustNet/blob/main/split_data/synthia_split_val.txt


Models (G) G
Baseline 76.57
ISW [1] 72.10

MRFP (Ours) 74.28
MRFP+ (Ours) 74.85

Table 2. Source-domain performance of models trained on the
GTAV dataset with Resnet50 backbone .

Models (S) S
Baseline 78.37
ISW [1] 77.48

MRFP (Ours) 75.87
MRFP+ (Ours) 74.05

Table 3. Source-domain performance of models trained on the
Synthia dataset with Resnet50 backbone .

Model(GTAV) B C S M Avg

U-Net [9] 25.32 28.49 19.48 30.80 26.02

U-Net with MRFP 28.87 28.79 19.60 36.01 28.31

Table 4. Performance comparison of domain generalization meth-
ods in terms of mIoU (%) using ResNet-50 backbone. Models are
trained on G → {B, C, S, M }.

A.3. Qualitative Results

Figure 1 shows the qualitative results of MRFP bench-
marked against other state-of-the-art domain generalization
methods. The results indicate that MRFP outperforms other
methods in unseen real-world datasets, especially in adverse
weather conditions as seen in Foggy Cityscapes.

A.4. Ablation study

Choice of network design: In designing the HRFP module,
we chose a four layer encoder-decoder structure guided by
Grad-CAM visualizations. Empirically, incorporating 4+
layers mostly captures redundant fine features leading to
performance saturation with only a marginal +0.3% OOD
performance gain, albeit with increased GPU memory us-
age during training. Conversely, 2 or 3 layers result in -
1.5% OOD performance. In the HRFP module, the num-
ber of channels in each layer remains consistent, except for
the layers added to the base network, ensuring compatibility
with the summation operation.

Table 5 shows the relative performance of three differ-
ent up-scaling factors for the bilinear interpolation of the
(High Resolution Feature Perturbation) HRFP block. The
proposed method HRFP is empirically set to have a overall
scale increase of 2 in its latent space. In other words, the
spatial resolution, over the course of the first four encoder
layers, is ultimately increased to double the spatial resolu-

tion of the input to the HRFP block. This can be termed
as overall scale-factor increase. To evaluate the memory
consumption to accuracy trade-offs, we present additional
results on overall scale factors of 1.5 and 2.5 respectively in
Table 5. It is observed that while a higher overall scale-
factor of 2.5 provides a slight improvement in the OOD
performance, the memory requirement during training is
substantially higher. An up-scaling factor of 1.5 provides
a slight drop in the OOD performance while the memory
requirements tend to be on the lower end. Overall, the sen-
sitivity to the up-scaling factor seems to be minimal, but in
the proposed method we adopt an overall scale factor of 2
as it helps us decrease the memory usage compared to 2.5
and add the HRFP+ decoder perturbation which yields sig-
nificant OOD performance improvements.

Table 6 shows the benefit of using the proposed
MRFP/MRFP+ for domain generalization. In Table 6,
L-MRFP is learnable MRFP which refers to the HRFP
block of MRFP being learnable and not randomized ev-
ery iteration. RGN refers to random Gaussian noise be-
ing added to features as feature perturbations instead of
the proposed MRFP/MRFP+ module to the baseline model
(DeepLabv3+). It is seen that feature perturbation is
helpful for robustness to domain shifts as L-MRFP per-
forms inferior to the proposed RGN and the proposed
MRFP/MRFP+. MRFP/MRFP+ out-of-domain(OOD) per-
formance surpasses L-MRFP and RGN by approximately
4%. This suggests that adding random noise to the features
as perturbations does increase the OOD performance but
has the issue of redundancy, and distorting the semantics
of the domain-invariant features which can negatively im-
pact OOD performance thus leaving room for improvement.
To fill this gap, the proposed MRFP/MRFP+ technique pre-
dominantly perturbs domain-specific features while mini-
mizing the semantic distortion that can occur to domain-
variant features by random perturbation.
The proposed HRFP block and the NP+ style perturbation
technique is introduced in the initial layers as they predom-
inantly contain style information and fine-grained domain-
specific features. To restrict these domain-specific features
from propagating and influencing the later layers of the net-
work, we add the HRFP/HRFP+ block with style perturba-
tion techniques at the initial layers. This setting was empir-
ically found to be the best.
A.5. Computational Complexity

Table 7 shows the computational complexity comparison of
the proposed MRFP technique with other domain general-
ization methods. Since MRFP is only used for training,
and only the baseline segmentation model DeepLabv3+ is
used for inference, the number of parameters and the com-
putational cost (GMACs) remains the same as the baseline
model. Although the parameters of SAN-SAW [7] is con-
siderably less compared to MRFP and the baseline model



Figure 1. Qualitative comparison with different domain generalization methods, trained on GTAV [8] with the backbone as ResNet50,
tested on BDD-100K [11], Cityscapes [3] and Foggy Cityscapes [10]. MRFP consistently generates superior predictions compared to other
methods, especially on Cityscapes and Foggy Cityscapes.

Models(GTAV) B C M Avg

MRFP (OSF=1.5) 38.29 40.27 41.95 40.17

MRFP (OSF=2.5) 39.21 39.84 43.20 40.75

MRFP 38.80 40.25 41.96 40.33

MRFP+ 39.55 42.40 44.93 42.29

Table 5. Performance comparison of domain generalization meth-
ods in terms of mIoU using ResNet50 backbone. Models are
trained on G → {B, C, M}. OSF= Overall scale-factor increase.

Model(GTAV) B C S M Avg

Baseline 31.44 34.66 25.84 32.93 31.21

L-MRFP 33.38 38.21 25.40 38.04 33.75

RGN 34.70 36.84 25.36 41.81 34.67

MRFP(Ours) 38.80 40.25 27.37 41.96 37.09

MRFP+(Ours) 39.55 42.20 30.22 44.93 39.27

Table 6. Performance comparison of domain generalization meth-
ods in terms of mIoU using ResNet50 backbone. Models are
trained on G → {B, C, S, M }. RGN=Random Gaussian Noise,
L-MRFP=Learnable MRFP.

DeepLabv3+ model, its computational cost and training
time is extremely high.

A.6. Comparison With Alternative Domain Gener-
alization Techniques

The domain generalization performance of the proposed
MRFP/MRFP+ technique is compared with numerous state-
of-the-art DG methods. The augmentations used for train-
ing and re-implementation are restricted to standard aug-

Models # of Params GMACs
Baseline 40.35M 554.31
IBN-Net [6] 45.08M 555.64
ISW [1] 45.08M 555.56
SAN-SAW [7] 25.63M 843.72
WildNet [5] 45.21M 554.32
MRFP 40.35M 554.31

Table 7. Inference computation cost comparisons of MRFP and
other contemporary methods.

mentations, and all settings are consistent with ISW [1].
We do not perform a performance comparison with Pro-
RandConv [2] on the Foggy Cityscapes dataset [10] because
its open-source code is not available. We also do not con-
duct a performance comparison between MRFP and [4], be-
cause of mainly two reasons: (1) in addition to using data
augmentations used in [1], extra strong style augmentations
are used to enhance the style information of urban-scene
images, using Automold road augmentation library†, and
(2) open source code is not available for re-implementation
without the extra strong style augmentations used. In the
future, we intend to use these augmentations for style vari-
ations on source domains.

References
[1] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim,

Seungryong Kim, and Jaegul Choo. Robustnet: Improving
domain generalization in urban-scene segmentation via in-
stance selective whitening. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11580–11590, 2021. 1, 2, 3

[2] Seokeon Choi, Debasmit Das, Sungha Choi, Seunghan Yang,
Hyunsin Park, and Sungrack Yun. Progressive random con-

†Automold Road augmentation library : https://github.com/
UjjwalSaxena/Automold--Road-Augmentation-Library

https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library


volutions for single domain generalization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 10312–10322, 2023. 3

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 3

[4] Wei Huang, Chang Chen, Yong Li, Jiacheng Li, Cheng Li,
Fenglong Song, Youliang Yan, and Zhiwei Xiong. Style
projected clustering for domain generalized semantic seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3061–
3071, 2023. 3

[5] Suhyeon Lee, Hongje Seong, Seongwon Lee, and Euntai
Kim. Wildnet: Learning domain generalized semantic seg-
mentation from the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9936–9946, 2022. 1, 3

[6] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two
at once: Enhancing learning and generalization capacities
via ibn-net. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 464–479, 2018. 1, 3

[7] Duo Peng, Yinjie Lei, Munawar Hayat, Yulan Guo, and Wen
Li. Semantic-Aware Domain Generalized Segmentation. In
2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2584–2595, New Orleans,
LA, USA, 2022. IEEE. 1, 2, 3

[8] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part II 14, pages 102–118. Springer,
2016. 3

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 1, 2

[10] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Seman-
tic foggy scene understanding with synthetic data. Interna-
tional Journal of Computer Vision, 126:973–992, 2018. 3

[11] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
2636–2645, 2020. 3


	. Supplementary Material
	. Additional Implementation Details
	. Quantitative Results
	. Qualitative Results
	. Ablation study
	. Computational Complexity
	. Comparison With Alternative Domain Generalization Techniques


