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In this supplementary material, we first present imple-
mentation details in Sec. 1. Later, we elaborate on the de-
tails of each dataset and present statistics about their con-
tent (Sec. 2). In Sec. 3, we complement the main paper
by presenting an extended ablation study for CHI3D [1]
and ExPI [6] datasets where we also discuss the nuances
for each. Finally, in Sec. 4, also complementing the main
text, we thoroughly explain the results we obtained for each
dataset and shown in Tab. 1 (which is the same table found
in the main text).

We strongly encourage the reviewer to look at our sup-
plementary video. There, we provide a supplementary
video showcasing various results for the datasets utilized
in this work. Alongside the results for our method, we also
include results from SLAHMR [7] and the baseline referred
to as EmbPose-MP, an extension of [3] tailored for multiple
people. Additionally, we include some illustrative instances
of failure cases.

1. Implementation Details

In our implementation, we use the MuJoCo [5] physics
simulator To initialize the kinematic motion, we use
SLAHMR [7] with its default values. For the first opti-
mization stage, 30 iterations are ran with λdata “ 0.001.
For the second stage, we optimize for for 60 iterations and
use λsmooth “ 5, λβ “ 0.05, λpose “ 0.04. Finally for
the last stage, we use λCV AE “ 0.075, λskate “ 100, and
λcon “ 10. For the imitation policy π we use the univer-
sal humanoid controller (UHC) [3]. The UHC from [3] ex-
tends the policy proposed in [2] to humanoids with different
body shapes. It is important for us to capture different body
shapes. The imitation policy is trained on the training split
of the AMASS dataset [4] where motion sequences that in-
volve human-object interactions are removed.

*Work done during internship at Stanford.

2. Datasets Details

In this section, we elaborate on the specifics of each dataset
employed in this work. In particular, we argue that given
the nature of each, they present different types of motions.
CHI3D contains mild motions of interacting people. Hi4D
contains more dynamic motions with more action variety
than CHI3D. Finally, ExPI contains highly dynamic and fast
motions.
CHI3D. This dataset contains 127 motion sequences for
each of the 5 pairs of subjects (3 train, 2 test) interacting
in everyday activities where people are in contact with each
other. Only the training motion sequences have publicly
accessible ground truth and the test annotations are hidden
from the public. For these reasons, we use and analyze the
train data split. Note that we do not train or fine-tune any
components to build our framework or the baselines used,
as such, using the train split is acceptable. The dataset con-
tains a total of 381 sequences (i.e. from 3 different subject
pairs), equivalent to 21 minutes of motion sequences. The
data is captured with 4 cameras that provide different views.
In this work, we use the videos from one randomly sam-
pled camera view to test our system. The activities included
are: kick, push, grab, posing, holding hands, handshake,
hit, and hug. In Fig. 1, we present the statistics statistics
related to the amount of data for each action present in the
dataset. The three activities with most data are: pushing,
hitting and grabbing. The three activities with less data are:
posing, holding hands, and handshake. Based on the nature
of these actions, they are mostly short sequences of around
6 seconds. The actions are performed by actors in a motion
capture studio. As such and confirmed by visually inspect-
ing the dataset, the motions are relatively slow and do not
include extreme or uncommon poses.
Hi4D. The dataset contains 100 short motion sequences
with close interactions and high contact between the sub-
jects performing diverse actions with 11K frames in total
and more than 6K frames of them with physical contact.
Contact annotations across the whole dataset cover over
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Figure 1. Statistics for CHI3D[1]. We present statistics on the
frequency of each action that is contained in the motion sequences.
CHI3D, in general, presents mild dynamic motions, this is re-
flected on the nature of the actions.

95% of the parametric human body. It includes 20 unique
pairs of participants with varying body shapes. The activ-
ities included are: dance, fight, highfive, hug, taichi, yoga,
basketball, talk, backhug, pose, bend, argue, game, kiss,
cheers, fever, handshake, sidehug, jump, piggyback, foot-
ball, leg, piggy. In Fig. 2 we see statistics of the amount of
data for each action present in the dataset. The three activi-
ties with the most sequences are: hug, fight, and dance. The
activities with fewer sequences are: taichi, yoga, bend, ar-
gue, (checking for) fever, handshake, jump, leg, and piggy.
Similar to CHI3D, all these motions are mostly short se-
quences of around 6 seconds. Given the nature of these ac-
tions and confirmed by visually inspecting the dataset, the
motions are more dynamic than CHI3D but less than ExPI.
This means that there are more sequences with fast motion.
In general, the motion include mostly common poses with
some exceptions such as taichi, piggyback, and yoga. In
summary, the Hi4D dataset presents dynamic motion and
common everyday poses.
ExPI. This dataset contains subjects performing 16 dif-
ferent complicated two-person dance routines, specifically,
Lindy Hop aerial steps. An aerial (or air step) is a dance
move where one’s feet leave the floor. The term is used to
denote a wide range of special and unusual dance moves,
including dips, slides, and tricks. Each of the aerials is re-
peated five times and in total, the dataset contains 115 short
sequences of around 6 seconds. Tab. 3 shows the differ-
ent dance routines performed by each pair of dancers, here
we can have a sense of the statistics of the datasets. The
motions that appear the most are at the top segment of the
table, and the rest are only performed by one of the couples.
Lindy Hop aerial steps are by definition a set of unusual
dance moves where one of the subjects’ feet does not hold
contact with the floor. Hence, these motions are highly dy-
namic and often involve heavy contact between the dancers.

Figure 2. Statistics for Hi4D[8]. We present statistics on the fre-
quency of each action that is contained in the motion sequences.
Hi4D, in general, presents more dynamic motions than CHI3D,
this is reflected on the nature of the actions.

Figure 3. Dance sequences included in ExPI [6]. This shows
the overall content of the dataset. In general, it contains highly
dynamic motions where the dancers move fast and have their feet
off the ground for a considerable amount of time.

3. Ablation Studies

In Fig. 4 and Fig. 5, we include detailed information where
we show the effect of our loop-N component for the CHI3D
and ExPI datasets, respectively. For similar graphs of Hi4D,
please refer to the main text. By looking at the physics-
based metrics, in Fig. 4a and Fig. 5a, we see that skating
increases with Nl similar to Hi4D, as discussed in Sec. 4.2
of main text. We also see that ground penetration is much
less severe for ExPI than CHI3D. This is explained by the
fact that in the ExPI, most of the frames contain at least one
person with his/her feet off the ground.

Looking at the pose metrics in Fig. 4b and Fig. 5b, we see
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Figure 4. Effect of Nl for CHI3D [1] dataset. We study the effect of different values of Nl “ t1, ..., 5u on both (a) physics and (b)
pose metrics. We report Pen. in m, Gnd Pen. in mm, Skating in mm, W-MPJPE and PA-MPJPE in mm, Acc. Error in mm/s2. We choose
Nl “ 2 for our experiments as it provides a good balance between physics and pose metrics.. Note that we scale Pen. metric by a factor of
1/10 to fit the graph.

[m
.] 

fo
r P

en
.  

ot
he

rw
is

e 
[m

m
.] 

0.0

2.0

4.0

6.0

8.0

10.0

1 2 3 4 5

Ground Pen. Skating Pen.

(a) Effect on physics-based metrics
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(b) Effect on pose metrics

Figure 5. Effect of Nl. for ExPI [6] dataset. The units in this figure are the same as for Fig. 4. Note that we scale Pen. metric by a factor
of 1/10 to fit the graph.

that, in general, PA-MPJPE and W-MPJPE errors behave in
a slightly different manner depending on the dataset. On
the one hand, for CHI3D, when changing Nl from 1 to 2,
the pose error drops (both PA-MPJPE and W-MPJPE ) and
then the values stay roughly the same when increasing Nl.
On the other hand, we see that for ExPI the error drops until
reaching its lowest value for Nl “ 4 for both PA-MPJPE
and W-MPJPE and then when Nl “ 5 the error increases
again. We hypothesise that this increase in error for Nl “ 5
is due to the fact that it is hard for the policy to maintain
a static reference pose when this pose is a valid static pose
(e.g. sitting down, hugging) and not otherwise (e.g. a per-
son doing a back-flip). Thus, the more iterations added to
the loop (an increase in Nl) for a given pose in a highly
dynamics motion will result in a degradation of this pose.

If we look at the acceleration metrics, we see that for
ExPI (Fig. 5b), the acceleration error grows with Nl, this is
due to the high dynamic nature of the motions.

4. Results Discussion

The discussion we present next is based on the main results
table from the main text which we copy here as Tab. 1 for
the ease of the reader.

Difference in PA-MPJPE . As it can be seen in Tab. 1,
the pose metric PA-MPJPE is slightly higher for our sys-
tem in comparison to SLAHMR [7] on the Hi4D and ExPI
datasets. While we discussed this on the main text, we ex-
pand that discussion here. As mentioned on Sec. 2, there is
a difference in the type of motion present in each dataset we
use. We have seen that, for example, ExPI is composed of
dance routines with aerial steps and it was built by recording
professional dancers. As such, we expect that the data con-
tained in ExPI is much more dynamic, i.e., the movements
are faster and can present uncommon poses, than CHI3D
and Hi4D. Thus, it is harder for our physics-aware correc-
tion module to match the reference pose. For this reason, to
better match the reference pose, we need to choose a bet-



CHI3D

Method Pen.Ó Gnd Pen.Ó SkatingÓ Acc. ErrorÓ W-MPJPEÓ PA-MPJPE (joint)Ó

SLAHMR [7] 139.3 4.4 1.0 6.5 177.1 83.5
EmbPose-MP [3] 40.2 2.6 2.8 7.7 214.7 96.5
Ours 18.7 3.2 2.7 7.4 174.7 80.4

Hi4D

Method Pen.Ó Gnd Pen.Ó SkatingÓ Acc. ErrorÓ W-MPJPEÓ PA-MPJPE (joint)Ó

SLAHMR [7] 367.3 12.2 4.9 6.9 121.6 69.1
EmbPose-MP [3] 39.8 3.8 1.3 12.7 148.8 92.9
Ours 51.1 2.4 3.5 9.6 118.1 71.2

ExPI

Method Pen.Ó Gnd Pen.Ó SkatingÓ Acc. ErrorÓ W-MPJPEÓ PA-MPJPE (joint)Ó

SLAHMR [7] 567.3 18.6 5.4 8.2 263.3 159.1
EmbPose-MP [3] 92.1 0.9 1.9 27.7 386.4 207.6
Ours 73.0 0.6 2.3 17.1 250.9 164.3

Table 1. Comparison with the state of the art. We report various metrics on CHI3D [1], Hi4D [8], and ExPI [6] datasets. Pose metrics
are W-MPJPE and PA-MPJPE (joint) in mm.

Figure 6. Effect of scale ambiguity in the joint estimation. Here
we present the ground truth skeleton (green) and the estimated
skeleton for P1 (gray) from the same frame as shown in Fig. 7. We
see that the right hand deviates considerably from its real position.
As explained in the text, this is caused by the depth misestimated
in the initialization when combined with the physics-aware correc-
tion module.

ter value for Nl. In the particular case of ExPI dataset, if
we look at Fig. 5 ignoring the rest of the metrics, we see
that if Nl “ 4 the PA-MPJPE (Fig. 5b) error drops from
165.7 (Nl “ 1) and 164.3 (Nl “ 2) to 163.5 (Nl “ 4). For
CHI3D (Fig. 4b), we also observe that if we increase Nl the
error decreases, however, in this case because the dataset
presents less dynamic motions than ExPI, this change is

much lower. Aside from this, there are two more subtle
reasons why PA-MPJPE is slightly higher for our system in
these datasets (CHI3D and ExPI): (i) scale ambiguity and
(ii) propagation of initial incorrect poses. These causes are
generally independent but, in some cases, (i) can cause (ii).
We can explain this with the example in Fig. 7. Here we see
a case where the initial estimates do not capture the correct
depth for each person (reason (i)), specifically, the man (P1)
is estimated closer to the camera than the woman (P2). This
type of poses affect the physically corrected results more
than in the case of purely kinematic estimates (reason (ii)).
This is due to the fact that in the former the bodies can-
not penetrate each other thus affecting the pose of the hand.
This effect can be appreciated in more detail in Fig. 6. This
does not happen with kinematic estimates. Therefore, the
PA-MPJPE metric is affected and thus slightly higher com-
pared to the initial estimates.

In general, (ii) can happen even when depth ambiguity is
not the root cause of an initial inaccurate estimate but there
are causes, for example, erroneous 2D keypoint estimates.
In this case, only reason (ii) applies.
Improvement in poses As mentioned in the main text (Sec.
4.1), one scenario where the estimated poses improve, after
forcing the motion to be physically compliant, is when a
person has both of their feet in contact with the ground. In
the simulation, the ground is taken as a hard constraint and
thus when the agent moves, it cannot penetrate it, resulting
in more realistic poses. In contrast, for kinematic estimates,
this constraint usually does not exist and if it does, it is im-
posed only as a soft constraint through a loss in an opti-



P0 P1

P0 P1

Figure 7. Example of scale ambiguity in the physics correction. Here, P0 should be at the same depth than P1, this inaccurate depth
estimate that comes from the initialization (bottom row) causes the pose metric PA-MPJPE to increase for the physically corrected pose
(top row). Note that in the rightmost column, while in the physically corrected pose, the right hand of P1 is displaced as it cannot penetrate
P0’s body, this does not happen in the kinematic pose. Thus in this case, the kinematic pose has a lower PA-MPJPE error.

P0 P1
PA-MPJPE(joint)=91.14

PA-MPJPE(joint)=97.08

Figure 8. Example of improved poses. We show a example where poses are improved w.r.t. the initial poses when using our physics-aware
correction module as measured by the PA-MPJPE metric. See the text and Fig. 9 for detailed analysis.

mization setup. Hence, kinematic estimates can penetrate
the ground leading to less accurate poses. We illustrate this
in Fig. 8, Fig. 9, and Fig. 10. In Fig. 8, we see the results
for one frame of a motion sequence in ExPI dataset. Here,
we present both the initial kinematic estimate (bottom row)
and the physically corrected estimate (top row). Along with
these results, we show the PA-MPJPE error for each case,
where this value is higher for the kinematic estimate. What
happens here is that in the kinematic case, the feet penetrate
the ground leading to less accurate poses. This is better

appreciated in Fig. 9, where we show the kinematic esti-
mates in the simulation environment (rightmost image) to-
gether with superposed skeletons of P0 that correspond to
the ground truth pose (green), kinematic pose (purple), and
the physically corrected pose (light gray). Here, especially
for the legs and the feet, the physically corrected pose is
closer to the ground truth. On more example of these effect
is shown in Fig. 10.



P0 P1
Figure 9. Joints visualization for pose improvement. Here, we show a detailed analysis of the joints corresponding to P0. The first three
images show the ground truth pose for (green), kinematic pose (purple), and the physically corrected pose (light gray), respectively. The
fourth image shows the kinematic estimates from a specific camera view. The last image shows the same kinematic poses in the simulation
space without applying the physics constraints, note that here we see how the feet penetrate the ground.

P0 P1PA-MPJPE(joint)=95.88

PA-MPJPE(joint)=111.55

Figure 10. Example of pose improvement. Here we show another example where adding physics constraints with a simulation, using our
physics-aware correction module, improves the estimated poses. Note how the PA-MPJPE metric improves in the physics-based estimates.
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