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A. 3D segmentation scores for full categories

We provide 3D segmentation scores, reported in mIoU, for
full categories of the ShapeNetPart [R1] and PartE [R7]
datasets in Tables A and B, respectively. Table A is asso-
ciated with Table 1 in the main paper, while Table B is as-
sociated with Tables 2 and 3. In Table A, 16 categories of
the ShapeNetPart dataset are reported, while 45 categories
of the PartE dataset are presented in Table B. For the tables,
it is readily observed that the proposed method, PartDistill,
attains substantial improvements compared to the compet-
ing methods [R4]–[R7] in most categories.

B. Evaluating 2D predictions

In the ablation studies of our method’s components pre-
sented in Table 5, we provide mIoU scores in 2D space,
mIoU2D, to evaluate the quality of the 2D predictions mea-
sured against the 2D ground truths before and after perform-
ing backward distillation which re-scores the confidence
scores of each knowledge unit. Here, the 2D ground truths
are obtained by projecting the 3D mesh (faces) part seg-
mentation labels to 2D space using the camera parameters
utilized when performing 2D multi-view rendering.

We first explain how to calculate the mIoU2D if a vision-
language model (VLM) which outputs pixel-wise predic-
tions (P-VLM) is used in our method and later explain if a
VLM which outputs bounding-box predictions (B-VLM) is
employed. In each view, let {si}ρi be the prediction maps
(see Eq. 1 in the main paper) of P-VLM with Ci denoting
the confidence score of si and G be the corresponding 2D
ground truth. We first calculate the IoU2D for each semantic
part r as,

IoU2D(r) =
I(r)
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and

γ(r) = Gr /∈
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si, (D)

with ϕ(r) denoting a function returning indices of {si}ρi=1

that predict part r, “Avg” denoting an averaging operation
and Gr indicating the ground truth of part r.

While Eq. B represents the intersection of the pixels
between the 2D predictions and the corresponding ground
truths, weighted by their confidence scores, Eq. C tells the
union of the 2D predictions pixels that do not intersect with
the corresponding ground truths, which is weighted by the
average of all confidence scores associated with part r. As
for Eq. D, it tells the ground truth pixels that do not inter-
sect with the corresponding 2D predictions union. We then
calculate the IoU2D score for each semantic part r in every
v view and compute the mean of them as mIoU2D.

Note that we involve the confidence scores as weights to
calculate the mIoU2D. This allows us to compare the qual-
ity of the 2D predictions before and after applying back-
ward distillation, using the confidence scores before and
after this process. To compute the mIoU2D scores when a
B-VLM is used in our method, we can use Eq. A with si in
Eq. B∼ Eq. D being replaced by F(bi), where F denotes
an operation excluding the background pixels covered in bi.

C. Additional visualizations
C.1. Visualization of few-shot segmentation

In Figure A, we present several visualizations for few-shot
segmentation obtained via our method, associated with Ta-
ble 3 in the main paper. Following the prior work [R7],
8-shot labeled shapes are utilized to carry the few-shot seg-
mentation. From the figure, it is evident that our method
successfully achieves satisfactory segmentation results.
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Table A. Zero-shot segmentation on all 16 categories of the ShapeNetPart dataset [R1], reported mIoU (%). In this table, TTA and Pre
denote the test-time alignment and pre-alignment versions of our method, while VLM stands for vision-language model (see main paper
for details).

Category
VLM - CLIP [R2] VLM - GLIP [R3]

point cloud input point cloud input mesh input

PointCLIP [R4] PointCLIP v2 [R5] Ours (TTA) Ours (Pre) Ours (TTA) Ours (Pre) SATR [R6] Ours (TTA) Ours (Pre)

Airplane 22.0 35.7 37.5 40.6 57.3 69.3 32.2 53.2 64.8
Bag 44.8 53.3 62.6 75.6 62.7 70.1 32.1 61.8 64.4
Cap 13.4 53.1 55.5 67.2 56.2 67.9 21.8 44.9 51.0
Car 30.4 34.5 36.4 41.2 32.4 39.2 22.3 30.2 32.3

Chair 18.7 51.9 56.4 65.0 74.2 86.5 25.2 66.4 67.4
Earphone 28.3 48.1 55.6 66.3 45.8 51.2 19.4 43.0 48.3

Guitar 22.7 59.1 71.7 85.8 60.6 76.8 37.7 50.7 64.8
Knife 24.8 66.7 76.9 79.8 78.5 85.7 40.1 66.3 70.0
Lamp 39.6 44.7 45.8 63.1 34.5 43.5 21.6 30.5 35.2

Laptop 22.9 61.8 67.4 92.6 85.7 91.9 50.4 68.3 83.1
Motorbike 26.3 31.4 33.4 38.2 30.6 37.8 25.4 28.8 32.5

Mug 48.6 45.5 53.5 83.1 82.5 85.6 76.4 83.9 86.5
Pistol 42.6 46.1 48.2 55.8 39.6 48.5 34.1 37.4 40.9

Rocket 22.7 46.7 49.3 49.5 36.8 48.9 33.2 41.1 45.3
Skateboard 42.7 45.8 47.7 49.2 34.2 43.5 22.3 26.2 34.5

Table 45.4 49.8 62.9 68.7 62.9 79.6 22.4 58.8 79.3
Overall 31.0 48.4 53.8 63.9 54.7 64.1 32.3 49.5 56.3
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Figure A. Visualization of few-shot segmentation results derived using our method on the PartE dataset [R7]. Each semantic part is drawn
in different colors.

C.2. Convergence curves

In the ablation studies presented in Table 5, we compare two
approaches used in the 3D encoder of our student network.
First, we employ a pre-trained PointM2AE [R8] backbone,
freeze the weights and only update the learnable parame-
ters in the student network’s distillation head. Second, we
utilize a PointM2AE backbone with its weights initialized
by PyTorch [R9] default initialization and set them to be

learnable, together with the parameters in the distillation
head. From the table, we observe comparable results be-
tween both settings (see rows (5) and (7) for the first and
second approaches respectively).

We then visualize the convergence curves in both set-
tings, as depicted in Figure B. From the figure, it can be
seen that the loss in the first approach converges signifi-
cantly faster than in the second approach. As a result, the



Table B. Segmentation on all 45 categories of the PartE
dataset [R7], reported in mIoU (%). In this table, TTA denotes
our method with test-time alignment (see main paper for details).

Category Zero-shot Few-shot

PartSLIP [R7] Ours (TTA) PartSLIP [R7] Ours

Bottle 76.3 77.4 83.4 84.6
Box 57.5 69.7 84.5 87.9

Bucket 2.0 16.8 36.5 50.7
Camera 21.4 29.4 58.3 60.1

Cart 87.7 88.5 88.1 90.1
Chair 60.7 74.1 85.3 88.4
Clock 26.7 23.6 37.6 37.2

Coffee machine 25.4 26.8 37.8 40.2
Dishwasher 10.3 18.6 62.5 60.2
Dispenser 16.5 11.4 73.8 74.7
Display 43.8 50.5 84.8 87.4

Door 2.7 41.1 40.8 55.5
Eyeglasses 1.8 59.7 88.3 91.1

Faucet 6.8 33.3 71.4 73.5
Folding chair 91.7 89.7 86.3 90.7

Globe 34.8 90.0 95.7 97.4
Kettle 20.8 24.2 77.0 78.6

Keyboard 37.3 38.5 53.6 70.8
Kitchenpot 4.7 36.8 69.6 69.7

Knife 46.8 59.2 65.2 71.4
Lamp 37.1 58.8 66.1 69.2

Laptop 27.0 37.1 29.7 40.0
Lighter 35.4 37.3 64.7 64.9

Microwave 16.6 23.2 42.7 43.8
Mouse 27.0 18.6 44.0 46.9
Oven 33.0 34.2 73.5 72.8
Pen 14.6 15.7 71.5 74.4

Phone 36.1 37.3 48.4 50.8
Pliers 5.4 51.9 33.2 90.4
Printer 0.8 3.3 4.3 6.3

Refrigerator 20.2 25.2 55.8 58.1
Remote 11.5 13.2 38.3 40.7

Safe 22.4 18.2 32.2 58.6
Scissors 21.8 64.4 60.3 68.8
Stapler 20.9 65.1 84.8 86.3

Storage furniture 29.5 30.6 53.6 56.5
Suitcase 40.2 43.2 70.4 73.4
Switch 9.5 30.3 59.4 60.7
Table 47.7 50.2 42.5 63.3

Toaster 13.8 11.4 60.0 58.7
Toilet 20.6 22.5 53.8 55.0

Trash can 30.1 49.3 22.3 70.0
Usb 10.9 39.1 54.4 64.3

Washing machine 12.5 12.9 53.5 55.1
Window 5.2 45.3 75.4 78.1
Overall 27.3 39.9 59.4 65.9

first approach also starts to perform backward distillation in
a substantially earlier epoch than the second one.

C.3. 2D rendering from various shape types

We present several 2D rendering images from various shape
types, including (i) gray mesh, (ii) colored mesh, (iii) dense
colored point cloud, and (iv) sparse gray point cloud, which
can be seen in Figure C. While PartSLIP [R7] renders the
multi-view images using type (iii), SATR [R6] uses type
(i). As for PointCLIP [R4] and PointCLIPv2 [R5], they use
type (iv) to render their multi-view images.

Figure B. Convergence curves of our method’s losses during opti-
mization epochs. While the first approach employs a pre-trained
PointM2AE [R8] model and freezes its weights, the second ap-
proach initializes the Point2MAE’s weights from scratch and sets
them to be learnable.

gray mesh colored mesh dense colored
point cloud
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Figure C. Several examples of 2D images rendered from various
shape types.
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