
SPIN: Simultaneous Perception, Interaction and Navigation

Supplementary Material

7. Qualitative Results

We test our framework in several in-the-wild scenarios,
some of which are illustrated in Figure 1. Qualitative video
results are available at https://spin-robot.github.io/.

We see emergent behavior where the robot continuously
avoids dynamic obstacles without seeing them during train-
ing. We also observe generalization heavily cluttered indoor
to dim-lit outdoor environments. The agent also demon-
strates reactive whole-body coordination where it moves its
arm up or down to efficiently navigate across floating obsta-
cles instead of re-routing and re-planning base movement,
demonstrating 3D spatial awareness.

8. Implementation Details

We make several design choices for the working of our
framework. Firstly, the robot is only allowed to have lo-
cal visibility in order to develop highly reactive and instant
behaviors. At any time instant t, the agent can perceive it’s
environment within a range of 2m in all 4 direction – front,
back, left and right based on the camera’s viewing direction
and it’s field of view. We also empirically observe that given
larger viewing range, say > 5m which contains information
of more than 4-5 nearest obstacles to the agent makes it a
sub-global path planning problem which becomes harder to
optimize, leading to degraded behavior and performance as
reported in Table 3.

Visibility Range Success Rate ↑ Distance to Goal (m) ↓
≤ 1m 0.96 0.28
≤ 2m 0.96 0.26
≤ 3m 0.93 0.63
≤ 5m 0.86 1.21

Table 3. We report the average success rate and average distance to
goal for 10 episodes across 3 seeds each with different maximum
visibility range for the agent at any time instant. As reported, with
broader visibility, the agent shows more frequent stalling leading
to higher average distance to goal.

Secondly, contrary to standard teacher-student architec-
tures which use privileged system information for training
the teacher, we restrict the privileged information to only
elements in the robot’s field-of-view that can be retrieved
from the ego-view in the same state. For this, we project the
obstacle scandots onto the image plane and pass only those
scandots to the robot observation which lie in the camera’s
field-of-view. Note that, if this were not the case, the robot
does not learn camera movement in a relevant fashion and

also becomes harder to distill into a depth-conditioned stu-
dent policy through only ego-centric view. Similarly, for the
3-phase decoupled visuo-motor optimization, we induce in-
formation bottleneck with a low-dimensional latent space
of size 16 for the scandots latent while training the teacher
policy, which again helps it in attending to most relevant
information at any time instant t in order to make student
policy distillation feasible.

Observation Space. The observation space for the robot
comprises of joint positions (q), joint velocities (qvel), end-
effector position peef , goal position (pgoal) and depth latent
(ẑ) containing visual information about the environment.
Note that during phase 1 training in simulation, scandots
(z) are used as a proxy for faster depth rendering and later
distilled into a egocentric depth-conditioned policy. During
real-world deployment, peef is obtained via forward kine-
matics and other proprioception information is obtained di-
rectly from the robot.

Action Space. The action space of the robot consists of
the velocity for base rotation as well as translation and joint
positions for all the other joints including arm, camera as
well as gripper actions. The gripper action is a continu-
ously varying scalar which can actuate the gripper to differ-
ent extents, unlike a binary action indicating open or closed
gripper.

Reward Scales. We use a distance and forward progress
goal for reaching, a binary reward for grasping and a contin-
uous shaped reward for lifting the object to a certain height
above the table. We also add a small penalty for the joint
velocities to the arm stretch and camera joints for a tempo-
rally smooth gait which permits easier sim2real transfer as
well as more appropriate behaviors leading to less jitter and
more consistent movements on the real hardware.

The reward scales used for goal reaching, grasping and
lift rewards are reported in Table 4. Detailed formulations
of the reward functions are described in Section 2.1.

Network Architecture and Training Details. The actor
and critic for teacher policy are LSTM with 256 hidden
units, with input as prorpioception, goal and scandots latent.
The scandots are compressed using a pointnet architecture
for permutation invariance. The depth network for the stu-
dent policy takes as input a low-resolution depth image of
size 58 × 87 and comprises of 3-layer convolution back-
bone followed by 3 fully-connected layers. We use Adam



(a) Pose I: Facing forward (b) Pose II: Facing downward (c) Pose III: Facing downward
and slightly forward

(d) Pose IV: Facing forward and
slightly downward

Figure 7. Different camera poses for the FixCam baseline.

Reward Scale
Reach Reward 0.1
Grasp Reward 0.5
Lift Reward 0.8

Joint Velocity Penalty -0.03

Table 4. We report the average success rate and average distance to
goal for 10 episodes across 3 seeds each with different maximum
visibility range for the agent at any time instant. As reported, with
broader visibility, the agent shows more frequent stalling leading
to higher average distance to goal.

Optimizer with an initial learning rate of 1e − 3, entropy
coefficient of 5e− 4 and γ as 0.99.

Asynchronous DAgger Training. Since depth render-
ing on simulators is a computational bottleneck, we imple-
ment an asynchronous version of DAgger algorithm which
simultaneously collects data in a buffer and trains the stu-
dent policy with batches sampled from the collected data
using 2 parallel processes. This provides a 2.5× computa-
tional speedup over the non-parallelized version of the algo-
rithm, allowing faster convergence of the student network.
We also find that freezing the weights of the student actor
pre-initialized from the teacher policy for first 1000 itera-
tions helps as warm-up steps to the depth convolution back-
bone for stable training.

Post-processing for clean depth images. To mitigate the
issues due to noisy depth, we post-process the depth ob-
tained from the Intel RealSense Camera using a real-time
fast hole-filling algorithm for depth images [23]. With the
camera constantly in motion, there are additional artefacts
with depth images. For this, we additionally use temporal
filtering over the stream of depth images.

Object Detection for Pick Policy Once the robot reaches
near the goal, we randomly select an object within its field
of view in order to be grasped and fetched to a target loca-

Scenario 1 Scenario 2
E M H E M H

I 0.93 0.40 0.20 0.97 0.40 0.20
II 0.70 0.30 0.10 0.67 0.47 0.10
III 0.86 0.33 0.10 0.77 0.30 0.10
IV 1.00 0.53 0.20 1.00 0.50 0.26

Table 5. Success rate for 4 FixCam poses in easy (E), medium
(M), hard (H) envs.

tion. For getting the target object location, we run YOLO
[20], a real-time object detection model with an average in-
ference speed of 20ms. We use the corresponding depth im-
age to deproject the pixel point into a 3D-coordinate which
is passed as the new goal position to the manipulation pol-
icy.

9. Analysing camera and base motion
Fixed Camera Baseline We run FixCam baseline with 4
camera poses (Figure 7) – I: Front, II: Down, III: Down
and slightly front, IV: Front and slightly down on easy (E),
medium (M), hard (H) environments. I, IV with max fov
have much lower success than SPIN, implying active vision
is required in clutter. Pose (IV depicts the FixCam baseline
referred in the paper.

Camera Movement and Camera Observations: We
show camera trajectory in Figure 8. When navigating
through clutter (frames 1, 2, 4), it tilts downward to max-
imize fov near the base, but with no nearby obstacle (frame
3), it faces front. Detailed movement of the camera can be
seen on the website along with paired RGBD images for
rollouts. RGB frames are only for analysis, the policy only
observes depth images.

Necessity for Active Vision and Whole-body coordina-
tion Active Vision: In principle, a multi-camera system
should be equivalently adequate, however most views will
contain insignificant information and require large models



Figure 8. Camera movement analysis in a trajectory. The agent faces the camera downward when navigating through tightly cluttered
vicinity as can be seen in the first, second and fourth frame, whereas the camera points more towards the front when there are no immediate
obstacles in the direction of movement, as illustrated in the third frame.

Figure 9. Scenarios where whole-body coordination is essential under heavy obstructions. In the above cases where the obstacles are
tightly packed, it is not possible for the robot to navigate through them avoiding collisions without lifting the arm to an appropriate height.

to process. With limited onboard compute on most robots
and requirement for real-time reactivity (< 0.1s), it be-
comes infeasible to deploy them with larger vision back-
bones.
Whole-body coordination (WBC): Under heavy obstruc-
tions, the robot cannot move without collision if the base
& arm control are decoupled. Figure 9 shows such a sce-
nario where a fixed arm and gripper close to base would fail
without WBC, which also allows it to use the extra degree
of freedom to find shorter and more efficient paths.

10. Directly training from depth images.

We compare training from depth (red) and our 2-phase
method with scandots (blue) in a medium difficulty envi-
ronment as illustrated in Figure 10. Depth policy has < 1%
success after 22h training, whereas total (phase1 + 2) wall-
clock time for SPIN is 16h (6+10). The simulator gives
≈ 50k fps for scandots (8192 envs) and ≈ 820 fps for depth
(256 environments – maximum parallel environments that
can fit on a single GPU), causing 61× slow-down bottle-
neck. This shows the necessity and efficiency of our pro-
posed 2-phased coupled visuomotor optimization approach
using scandots over naively training an RL policy from

Figure 10. Success rate for scandots (blue) vs depth (red). The
depth-based policy attains close to 0 performance even after 400k
env steps of training, whereas the policy trained with scandots in-
creasingly improves over time.

depth observations.

11. Classical Navigation Baseline

As discussed in Section 3, we compare our method with
a classical map-based baseline which uses the 2D RPLidar
to build an environment map and then creates a plan using
Monte Carlo method. We observe that for > 90% of the



Figure 11. Visualizations of environment map built using 2D Lidar. The robot is localized as per its initial position and orientation.

cases, the robot is able to build a map and find a feasible
path, however it is not able to execute the planned path for
> 85% cases. This issue arises due to noisy control or unex-
pected wheel motion due to terrain differences. Our method
is able to overcome such failures due to a constant feedback
and reactive improvisation through proprioception as well
as depth, which allows it to deal with uncertainties without
requiring a pre-built environment map. Moreover, due to lo-
calization inaccuracies, the baseline method is often unable
to reach the intended goal if not initialized in the same ori-
entation as was used before building the map. Contrary to
that, we heavily randomize all degrees of freedom as well as
the robot orientation at the beginning of every rollout dur-
ing test time. Moreover, since the robot has a 2D Lidar
installed on it, we do not test it in environments with float-
ing obstacles which would require 3D understanding and
whole-body coordination to navigate through clutter. We
show some visualizations of the map built and plans created
by the robot in Figure 11.


