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1. Implementation Details

Below, we report the training setup in detail. For all meth-
ods, and a particular dataset and architecture, the same
training setup was used unless stated otherwise.

Convolution Neural Networks For CIFAR-100 and Tiny
ImageNet we use the SGD optimiser with an initial learn-
ing rate of 0.2, Nesterov momentum of 0.9 with a batch
size of 128 training for 100 epochs. We use a weight de-
cay of 0.0005 and we do not decay the affine parameters
of normalisation. For CIFAR-10, we follow the same setup
as above, except we train for 200 epochs with a batch size
of 256 and an initial learning rate of 0.1. The learning rate
is decayed with a cosine annealing schedule to O which is
stepped step-wise. For all models, we always employ the
standard transformation of random crop with a padding of
4 and random horizontal flip.

For ImageNet, we follow [3] in that we use SGD opti-
miser with an initial learning rate of 0.1 and Nesterov mo-
mentum of 0.9 and train for 90 epochs. We use a weight
decay of 0.0001 and we do not decay affine parameters of
normalisation. The learning rate decays with a by a factor
of 0.1 every 30 epochs. For all models, we employ the stan-
dard transformation of random resized crop to image size of
224 x 224 with bilinear interpolation and random horizontal
flip, before other augmentations.

We choose to train all models from scratch (no fine-
tuning using AFA) so that we can study the effects of AFA
without other underlying factors. Therefore, for fair com-
parison, we retrain PRIME from scratch as well using our
setup. For models trained with JSD, we follow [5] for the
regularising coefficient, mainly: A = 10 for CIFAR-10 and
Tiny ImageNet, A = 1 for CIFAR-100 and A = 12 for Ima-
geNet.

We only use the main BN layers during testing, similar
to AugMax for all convolution models.
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Compact Convolution Transformer For CIFAR-10/100
and ImageNet we also train a transformer architecture. For
all datasets we use CutMix (alpha=1.0) and MixUp (al-
pha=0.2 for ImageNet and alpha=1.0 for CIFAR-10/100)
with an equal chance of applying one of the two. For
CIFAR-10/100, we follow [1]. We train using the AdamW
optimiser with max learning rate of 0.0006 and weight de-
cay of 0.06, and we do not decay the affine parameters of
the normalisation modules. We train with an effective batch
size of 256, and apply learning rate decay following a cosine
decay with a warm-up period of 10 epochs and the learn-
ing rate scheduler is stepped step-wise. For ImageNet, we
use a max learning rate of 0.0005, effective batch size of
1024 and a weight decay of 0.05. The learning rate decay
follows a cosine annealing schedule with a warm-up of 25
epochs. The same standard transformations as for convolu-
tional neural networks were applied.

2. Evaluation metrics

Mean corruption error (mCE) measures the robustness
of models against image corruptions [2], computed as:
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where the sum of classification error E of five severity
s €{1,2,3,4,5} per corruption ¢ of model f is normalized
by that of a baseline model. The normalized classification
errors of all corruptions C' in the dataset are averaged to
obtain mCE. We use AlexNet as baseline in ImageNet ex-
periments and ResNet-18 for Tiny ImageNet. For CIFAR-
10/100 there are no baselines advised so we do not report
the mCE for these datasets.

Mean flip rate (mFR) evaluates the consistency of model
predictions with increasing perturbations [2], computed as
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1(f ($§z)) # f (argi)l)) measures whether the prediction
of the model f on a frame z; is the same as its previous per-
turbed frame in the 7*" sequence. If the predictions are the
same, 1(f (xg-z)) # f (wﬁl)) equals to zero, and thus the
performance of the model is not affected by the considered
perturbations. FP{ measures the consistency of predictions
over m perturbed sequences, each with n of frames. For a
sequence corrupted by noise, the predictions are compared
with those of the first frame, as noise is not temporally re-
lated. The mFR is obtained by averaging the normalized
FP{ by that of a baseline model across all the perturbations
C. The value of mFR is expected to be close to zero for a
robust model.

Mean top-5 distance (mT5D) also measures the consis-
tency of model predictions in terms of increasing pertur-
bations [2]. For a robust model, the top-5 predictions of
frames over a sequence should be relevant to those of the
previous frames in the sequence. The top-5 distance thus
measures the inconsistency of top-5 predictions under con-
secutive perturbations, computed as follows:
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where p(7(z;)(k)) = 7(xj_1)(k), T(x;) is the ranking of
predictions for a perturbed frame x; and 7(z;) (k) indicates
the rank of the prediction being k. If 7(z;) and 7(x;_1)
are the same, then d(7(x;),7(z;—1)) = 0. Averaging the
normalized T'5D by that of the baseline over all corruptions
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Fourier heatmap evaluates model robustness from a
Fourier perspective [6] exploiting Fourier basis functions
to perturb test images and measuring the classification er-
ror of models. They are constructed as follows. Let U; ; €
R4 *% be a real-valued matrix such that its norm equals

TIN-C

- Main Auxiliary SAT RAT mCE|
- X 63.56 2586 97.34

AFA X 59.04 28.87 9345

- AFA 62.52 3335 8758
AugMix X 62.95 3626  84.05

®©  AugMix AFA 62.51 38.67  80.83
g AugMix’ X 64.65 3630  83.90
§ AugMixt AFA 64.34 3852  80.79
PRIME X 63.07 39.67 79.42
PRIME AFA 62.48 41.09 7755
PRIMET X 6324 4122 7744
PRIMET AFA 62.65 43.00 73.11

Table 1. Results for TIN-C with ResNet18. Models with T use loss
with JSD.
Baseline PRIME

PRIME+AFA TA TA+AFA

0.6

Figure 1. Fourier heatmaps of CCT trained with standard setting,
PRIME, PRIME+AFA, TA and TA+AFA.

to 1. The Fourier transform of U; ; has only two non-zero
elements located at (7, ;) and the corresponding symmet-
ric coordinate with respect to the image center. Given an
image X, a perturbed image with Fourier basis noise can
be generated by Xi,j = X +rvU; ;, where r is chosen ran-
domly from a uniform distribution ranging from -1 to 1, and
v controls the strength of the added noise. Each channel of
the images is perturbed independently with different r and
v. The model robustness against Fourier basis noise U ; is
evaluated by the classification error, and the final outcome
is in a form of heatmap which records the error of the eval-
uated model under different Fourier basis noise. Examples
are in Fig. 1.

3. Supplementary results
3.1. Results on Tiny ImageNet

In Tab. 1 we provide the robustness results on Tiny Ima-
geNet (TIN), which are consistent with those presented on
other datasets. Models trained with AFA show robustness
improvements consistently by significant margin with only
negligible reduction of the clean accuracy. We again see
that JSD improves robustness slightly, and in AugMix it im-
proves clean accuracy greatly.

3.2. Robustness in the frequency spectrum.

The Fourier heatmaps of CCT trained with standard set-
ting, PRIME, PRIME+AFA, TA and TA+AFA are provided
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Figure 2. Corruption error of ResNet50 and CCT trained with PRIME, PRIME+AFA, TA, TA+AFA, AugMix and AugMix+AFA. Models
trained with AFA (orange points) have lower error at each severity than their counterpart trained with only visual augmentation (blue

points), demonstrating the benefit of AFA to corruption robustness.

in Fig. 1. Our observations are consistent with those in the
main paper. Also CCT models trained with the contribu-
tion of AFA have better robustness to low and middle-high
frequency corruptions.

3.3. Robustness per corruption severity.

We report the classification error of models tested under
corruptions with different severity levels Fig. 2. The mod-
els trained with AFA have consistently lower error than
their counterpart trained without AFA, showing that AFA
can further boost the robustness of models against common
image corruptions, especially in difficult testing conditions
with high severity.

3.4. Robustness to each image corruption.

Furthermore, we show the classification error averaged over
five corruption severity levels per corruption type in Fig. 4.
The error points of model trained with visual augmenta-
tions only, and with further use of AFA are connected by
a line. A downward trend means models trained with AFA
have better robustness performance on specific corruption
types. We observe that, in general, models with AFA have
better corruption robustness than models trained only with

visual augmentations. Significant improvements are espe-
cially evident on noise corruptions (Gaussian noise, impulse
noise, iso noise, plasma noise, shot noise, single frequency
grayscale noise and cocentric sine waves). One exception
is ResNet50 trained with AugMix and AFA, for which the
model trained without AFA performs better except on few
cases. This can be attributed to the less training time (90
epoch vs 180 epochs) than that of ResNet50+AugMix.

4. Evidence of adversarial nature of AFA
4.1. Main and auxiliary batch normalisation

For the ResNet architecture, which includes Batch Normali-
sation layers, we had replaced the Batch Normalisation lay-
ers with DuBIN layers [5] while operating the Auxiliary set-
ting. Assuming that there is no difference in the distribution
of images augmented using AFA and a typical visual aug-
mentation technique, there should be no difference in the
affine parameters learnt for each individual batch normali-
sation parameter (the main and the auxiliary).

We show in Fig. 5 the Mean Absolute Difference of the
same parameter between the main and the auxiliary compo-
nent of the DuBIN layer at different depths of the model.
We show the results for for models trained with ACE loss
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Figure 3. Averaged classification error per corruption of ResNet50s (orange) and CCTs (green). The error points of model trained with

visual augmentations and additionally with AFA are connected. A decreasing line indicates better performance when trained additionally

with AFA (a).
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Figure 4. Averaged classification error per corruption of ResNet50s (orange) and CCTs (green). The error points of model trained with

visual augmentations and additionally with AFA are connected. A decreasing line indicates better performance when models are trained

additionally with AFA (b).
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Figure 5. Comparison of the mean absolute difference of the learnt
affine parameters for the two batch normalisations in the Dual
Batch Norm Layers of ResNet50-DuBIN architecture at different
depths.

for ResNet-50 where AFA is paired with just standard trans-
forms, AugMix, PRIME and Trivial Augment (TA).

We can see that at earlier depths the parameter differ
largely, which is explained by the difference in distribution
of a visually augmented and AFA augmented image. This
difference converges to a lower value, which is again ex-
plained by the model attempting to extract similar features
from the differently augmented images.

4.2. Embedding Space Visualization

We compare how diverse are the augmentations of AFA are
with respect to other methods. We follow the procedure in
[4]. To reiterate the procedure, we randomly select 3 images
from ImageNet, each one belonging to a different class. For
each image, we generate 100 transformed instances using
Standard Transform, Trivial Augment, PRIME, PGD attack

with the following parameters: 5 steps, epsilon of 8/255
and alpha of 2/255, and with AFA. Then, we pass the trans-
formed instances of each method through a ResNet-50 pre-
trained on ImageNet using standard transform and training
setup, and extract the features of its embedding space from
the penultimate layer before the dense layer. On the features
extracted for each method, we perform PCA after whiten-
ing and then visualize the projection of the features onto
the first two principal components. We visualize the pro-
jected augmented space in Fig. 6, which demonstrates that
AFA generates which are more akin to an adversarial attack
rather than a standard augmentation. This is clear from a vi-
sual similarity of AFA’s result in Fig. 6e to PGD’s result in
Fig. 6d and dissimilarity to the other Visual Augmentation
techniques.

Finally, we also add in Fig. 6f the embedding space vi-
sualisation for the Auxiliary Trained model with AFA aug-
mentation and standard transform for main, following the
same procedure as above. We see that the model learns
more separable embeddings for images augmented with
AFA using the auxiliary setting, therefore is less sensitive to
Frequency perturbation. The embeddings also retain a large
variance and hardness, therefore showcasing the diversity
of the augmentations of AFA.

5. Regularisation Effect

In Fig. 7 we show the norm of the weights of the convo-
lutional kernels for the ResNet50 models trained with and
without AFA at each depth. We see that AFA provides a
strong regularisation effect that is akin to the regularisation
effect of PRIME. Meanwhile, we see that AugMix does not
regularise the weights at all compared to the baseline model
with only the standard transforms. The weights are however
regularised to when AFA is paired with AugMix. Combined
with PRIME, there does not seem to be further regularisa-
tion of the weights.

6. Proof of Augmenting Fourier Domain

Lemma 1 (Linearity). Let f, g be functions of a real vari-
able and let F (f) and .F (g) be their Fourier transforms.
Then for complex numbers a and b

F(af +bg) = aF (f) +bF(9), (6)
therefore, Fourier transform % is a linear transformation.

Lemma 2 (Fourier Transform of Plane Wave). The Fourier
transform of the planar wave given by the frequency [ and
the direction w, As ., has a fourier transform

F(Ag ) = F (Rcos(2m f(ucos(w) + vsin(w)))) (7)

(0(2,9) +6(z,9)) ®)

v 5
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Figure 6. Differences in the Embedding Space for Different Methods and PGD Attack. From (a)-(e) the standardly trained model is used,
and for (f) the model trained in the auxiliary setting is used.
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Figure 7. The norm of the Conv2d Layers for ResNet 50 trained with different augmentation techniques with and without AFA. The plot
highlights the regularisation effect the methods have on the model weights.

where, & = x — fcos(w), § = y — fsin(w) and T = wave using AFA, oAy, dropping the subscript for the
x+ feos(w), § =y + fsin(w).

Theorem 1 (AFA Augments the Fourier Domain). Given

an image sample s, an augmentation using AFA produces

as augmentation in the Fourier domain of the image for one
specific frequency and orientation of the wave (f,w).

Proof. Given image s and the randomly sampled planar



channels for clarity, we have:

F(AFA(s)) = F (s +0Ay,)

=F(s)+0F(As.w) )
(using Lemma 1)

oR  _ . _
=7 (s) + — (0(2,9) +d(z,9)). (10)

2
(using Lemma 2)

Therefore, we prove augmenting an image s with AFA cor-
responds to augmenting the amplitude of a specific fre-
quency component (f,w) in the 2D Fourier transform of the
image. O
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