
Appendix
DiffusionPoser: Real-time Human Motion Reconstruction From Arbitrary

Sparse Sensors Using Autoregressive Diffusion

A. DiffusionPoser for OpenSim
We implemented DiffusionPoser for another skeleton

model, the OpenSim skeleton. This model has been used
in hundreds of biomechanical studies [12]. In addition to
having physiologically-realistic joint definitions, OpenSim
models the musculoskeletal system providing information
such as muscle-tendon lengths, which can be used for com-
putation of muscle forces, and energy consumption as in
[1, 2].

A.1. Skeleton and motion representation

We used the Lai musculoskeletal model [6] from Open-
Sim (Figure 1). This model comprises 31 degrees of free-
dom (pelvis [6], hips [3], knees [1], ankles [1], subtalar
joints [1], lumbar [3], shoulders [3], elbows [1], radioul-
nar joints[1]). The translational and orientation offsets be-
tween different joints are physiologically realistic. For ex-
ample, the knee joint rotation axis translates and rotates as
a function of the knee angle. Because the torso is rigid
and there is no neck joint, we do not allow an IMU placed
at the head for this implementation. As such, the Open-
Sim model has fewer degrees of freedom and one less
IMU than SMPL, which has implications for the motion
representation. The motion is now represented by x ∈
R61×135=61×(16×6+12×3+2+1+4) to represent 61 frames of
16 joint orientations (6dof representation), 12 IMU accel-
erations of bone specific sites (3dof), horizontal position
change (2dof), vertical position (1dof) and 4 contact labels.

A.2. Training Data

Since no large dataset of motion synthesized with Open-
Sim models exists, we created one from existing marker-
based optical motion capture datasets. We synthesized
motions and associated musculoskeletal models scaled to
subject anthropometry. To this end, we used AddBiome-
chanics, a new tool that automates the estimation of joint
kinematics from marker data [13]. We used marker-based
optical motion capture data from three existing datasets
[5, 10, 11] to synthesize motions. The aggregated dataset
comprises data from 339 subjects and 3350 trials. Syn-

thesizing training data is identical to the procedure for the
SMPL implementation.

A.3. Quantitative Results

We compare selected configurationurations from Diffu-
sionPoser for OpenSim against TIP [4]. Due to the differ-
ences in the OpenSim skeleton and SMPL, we need to es-
tablish joint correspondence when calculating MJOE and
MJPE. For each joint in OpenSim, we found the closest
corresponding joint in SMPL. Joints on the limbs can be ex-
actly mapped between skeletons, but SMPL has many more
joints proximal to the root which are not all included in the
metric calculation. Although the mapping for these prox-
imal joints is not exact between skeletons, we found that
proximal joints nevertheless have low position error com-
pared to joints on the limbs, as the error increases when
progressing along the kinematic tree.
We show evaluation metrics for TIP [4] and DiffusionPoser
for OpenSim in Table 1. We show results for DiffusionPoser
with four different configurationurations with six, four and
three sensors. Similar to DiffusionPoser for SMPL we
found that DiffusionPoser for OpenSim is close to TIP for
different evaluation metrics. The degradation of the evalua-
tion metrics with more sparse sensor configurationurations
is similar for the OpenSim and SMPL version as well.

Table 1. Comparison between selected configurationurations
of DiffusionPoser for six, four and three sensors and TIP on
the TotalCaptureReal dataset.

configuration LA[◦] JPE[cm] RE2[m] RE10[m]

TIP 12.1 6.8 0.17 0.32

plvs, torso, ftr,
ftl, wrr, wrl

13.6 6.3 0.14 0.35

ftr, ftl, wrr, wrl 14.7 7.8 0.14 0.37

plvs, ftr, ftl 19.7 11.9 0.19 0.50

plvs, ftr, wrl 18.6 10.8 0.22 0.82



A.4. Ablation with conditional transformer with
sensor configuration mask

We compared performance of DiffusionPoser for Open-
Sim, which is a generative model against a regression model
using a conditional transformer. We chose the same trans-
former architecture for the conditional transformer as for
DiffusionPoser and concatenate a mask that represents the
IMU configuration to the input features. During training we
randomly sample across IMU configurations and mask out
the non-measured parts of the feature vector for the final
frame. The first 60 frames are assumed given as input dur-
ing training, where we dropout 80% of the non-measured
features to avoid overfitting [4, 9]. As we will deploy this
transformer in an online autoregressive fashion we only care
about predicting the last frame. At inference, we shift the
latest prediction into the history at every new frame.

DiffusionPoser performs better than the conditional
transformer across different IMU configurations (Table 2).
From analyzing the conditional transformer predictions we
found that for some trials it is on par with DiffusionPoser
while it fails in other cases. We attribute robustness of Dif-
fusionPoser to its generative nature.

Table 2. Evaluation of a conditional transformer fulfilling the
task of DiffusionPoser.

configuration system LA[◦] JPE[cm] RE10[m]

plvs, torso, ftr,

ftl, wrr, wrl

conditional 19.1 11.8 1.15

generative 13.6 6.3 0.35

ftr, ftl, wrr, wrl conditional 22.5 14.7 1.47
generative 14.7 7.8 0.37

plvs, ftr, ftl conditional 25.9 18.1 1.58
generative 19.7 11.9 0.50

A.5. Qualitative Results

A video with results from DiffusionPoser for OpenSim
is to be found on our project website.

B. Baseline comparisons for six IMU sensors
B.1. Details on evaluation metrics

We compared DiffusionPoser to state-of-the-art methods
that focus on reconstructing motion from a specific six IMU
sensor configuration: Transpose [15], TIP [4] and PIP [14].
We evaluated these three systems and DiffusionPoser on the
same evaluation metrics and provide a script that unifies the
evaluation code and metrics from the prior work for a fair
and direct comparison. Our evaluation metrics for Trans-
pose, TIP and PIP have slightly different numerical values
than those reported in the respective papers for correspond-
ing metrics. This has several reasons:

Figure 1. (Left) OpenSim kinematic model with IMUs. Our
model includes 10 hinge joints shown in blue and 5 ball-and-
socket joints shown in green, resulting in 31 degrees of freedom.
IMU location canditates are shown in orange. (Right) User in-
strumented with IMUs.

• For PIP and Transpose, the ground truth for TotalCap-
ture trials comes from the DIP paper [3] and is the re-
sult of reconstructing motion from using marker infor-
mation. TIP however uses the published ground truth
poses from the TotalCapture split in AMASS. These
reconstructions are also based on marker information,
but are slightly different. Here we used the DIP recon-
structions of TotalCapture for all evaluations.

• PIP and Transpose evaluated on more TotalCapture tri-
als than TIP. The reason is that the ground truth for TIP
(see above) does not have reconstructions for all trials.
The ground truth provided by DIP and used by Trans-
pose and PIP does have all reconstructions, and this is
why we used this split for evaluation.

• For global angular errors there is some inconsistency
as to whether the root orientations are first aligned be-
fore calculating the errors. We first aligned the root
orientations between reconstruction and ground truth
before calculating joint position errors and global ori-
entation errors.

• For the global angular errors, the local angular errors
and the joint position errors there was no consistent set
of joints across which values were averaged. Because

https://diffusionposer.github.io/


Table 3. Comparison of DiffusionPoser to different baselines
for DIP-IMU. Numbers are averages over all trials, bracketed
numbers are the metrics from the trial with the highest error.

system LA [◦] GA [◦] JPE [cm]

Transpose 13.1(18.5) 12.3(17.2) 6.1(9.5)

PIP 12.4(20.1) 12.4(19.2) 5.2(8.6)

TIP 12.4(28.1) 11.7(21.0) 5.7(13.4)

DiffusionPoser 12.4(18.8) 11.6(19.4) 5.3(9.2)

some joints are ignored, f.e. the root, wrists, fingers,
toes and ankles (only by PIP and Transpose), these er-
rors were set to zero. However, not all of these zeroed
values were excluded from averaging which leads to
lower average errors. For the joint error and global
orientation error we ignored the root joint (which has
zero error due to alignment) and the wrist, finger and
toe joints because this degree of freedom was not esti-
mated.

B.2. Comparison on DIP-IMU dataset

Besides comparing DiffusionPoser against other systems
on TotalCaptureReal (see main paper), we also evaluated on
DIP-IMU [3], which has real IMU data coupled with ground
truth motion as well. Similar to Transpose, PIP and TIP we
finetuned on the first eight subjects of the DIP dataset and
tested on subject nine and ten. Since DIP-IMU does not
have ground truth for root motion, we first used the model
before finetuning to get a reasonable reconstruction of the
ground truth root motion to complete the training data. Re-
sults form the comparisons are in Table 3. Similar to To-
talCapture, results are very close between the four systems.

C. Evaluation results for different IMU config-
urations

In this section we provide tables with detailed results for
all the configurations for which we tested DiffusionPoser.

We start with a summary graph that compares accuracy
on different metrics for the best configuration give a number
of IMUs (figure 2).

Table 4 shows results for the different configurations we
tested on TotalCaptureSynth. We tested configurations with
four, three and two sensors. For the case of three and four
IMUs we limited ourselves to cases with symmetry for in-
strumented limbs (e.g. if there is a sensor on the right foot,
there is one on the left foot as well). Conclusions on these
results are outlined in the main paper. Table 5 reports the
same metrics but for all configurations tested (between one
and six sensors) on TotalCaptureReal. Here we are more
limited in possible configurations because we only have
IMU data for head, pelvis, wrists and shanks.

Figure 2. Accuracy on different metrics of the best configuration
for a given number of IMUs. Tested for 1 to 6 IMUs that could be
attached to wrists, shanks, pelvis and head.



Table 4. Evaluation of different configurations using four, three and two sensors on ‘TotalCaptureSynth’. Darker cell colors indicate
better metrics. Colors are normalized per metric and per number of sensors.

configuration GA [◦] legsLA[◦] backLA[◦] Jitter[-] RE2[m] RE10[m]

plvs, head, thr, thl 22.3 7.0 13.0 2.9 0.11 0.31

plvs, head, shr, shl 22.3 11.1 13.1 2.5 0.08 0.17

plvs, head, ftr, ftl 21.8 12.1 13.4 3.0 0.12 0.23

plvs, head, armr, arml 14.4 15.6 7.6 3.4 0.18 0.74

plvs, head, wrr, wrl 11.8 15.1 8.4 3.3 0.40 0.76

thr, thl, shr, shl 15.0 7.5 14.0 2.0 0.10 0.11

thr, thl, ftr, ftl 24.4 10.6 13.9 2.8 0.09 0.14

thr, thl, armr, arml 13.8 9.7 8.2 3.1 0.20 0.30

thr, thl, wrr, wrl 13.1 10.8 9.3 3.1 0.20 0.33

shr, shl, ftr, ftl 26.7 9.5 14.9 2.9 0.15 0.24

shr, shl, armr, arml 16.6 15.2 9.7 2.9 0.13 0.20

shr, shl, wrr, wrl 16.0 15.9 11.7 2.9 0.14 0.22

ftr, ftl, armr, arml 15.1 16.2 11.0 3.2 0.08 0.23

ftr, ftl, wrr, wrl 14.9 16.4 11.2 3.3 0.08 0.23

armr, arml, wrr, wrl 19.3 11.3 18.3 3.2 0.24 1.20

plvs, thr, thl 27.8 7.5 14.0 2.9 0.14 0.40

plvs, shr, shl 28.1 12.7 14.2 2.5 0.10 0.21

plvs, ftr, ftl 27.7 13.7 14.5 2.9 0.09 0.25

plvs, armr, arml 17.9 19.3 8.9 3.4 0.20 0.90

plvs, wrr, wrl 17.2 20.9 10.2 3.5 0.21 0.76

hd, armr, arml 19.8 16.5 10.2 3.1 0.26 1.03

hd, thr, thl 23.1 10.1 13.6 3.0 0.16 0.37

hd, shr, shl 19.8 16.5 10.2 3.1 0.26 1.03

hd, ftr, ftl 19.8 16.5 10.2 3.1 0.26 1.03

hd,wrr, wrl 18.4 16.1 11.2 3.2 0.23 0.95

plvs, thr 32.5 12.0 14.7 2.9 0.17 0.75

plvs, thl 34.0 12.4 15.4 3.4 0.20 0.66

plvs, shr 32.9 15.2 15.0 2.8 0.13 0.50

plvs, shl 23.5 15.1 13.1 3.4 0.16 0.56

plvs, ftr 32.3 15.5 14.8 2.9 0.16 0.48

plvs, ftl 26.4 16.5 16.3 3.9 0.18 0.52

thr, thl 27.1 13.9 14.9 2.9 0.15 0.59

shr, shl 29.9 17.0 16.4 3.1 0.12 0.26

ftr, ftl 28.2 15.5 15.6 3.0 0.09 0.34

plvs, hd 31.6 18.4 15.2 3.1 0.25 1.04

plvs, armr 23.8 17.6 13.5 3.1 0.26 1.06

plvs, arml 23.1 19.5 13.2 2.7 0.25 0.94

plvs, wrr 23.0 18.0 14.0 2.3 0.26 1.26

plvs, wrl 23.1 18.9 13.9 3.0 0.30 1.13

hd, armr 23.5 17.2 13.2 3.0 0.28 1.18

hd, arml 23.2 19.4 13.0 2.8 0.28 0.84

hd,wrr 23.0 18.6 14.0 3.3 0.24 1.16

hd,wrl 23.1 19.1 13.9 2.8 0.27 0.88

armr, arml 22.9 20.8 12.7 3.3 0.28 1.17

wrr, wrl 26.6 22.9 16.5 3.1 0.32 1.00



Table 5. Evaluation of different configurations using six, five, four, three, two and one sensors on ‘TotalCaptureReal’. We test
all possible with six or fewer IMUs across six potential attachment sites: pelvis, head, wrists, shanks. Darker cell colors indicate better
metrics. Colors are normalized per metric and per number of sensors.

configuration GA [◦] legsLA[◦] backLA[◦] Jitter[-] RE2[m] RE10[m]

plvs, hd, wrr, wrl, shr, shl 14.4 14.0 10.9 2.8 0.14 0.25

plvs, wrr, wrl, shr, shl 18.0 16.9 12.5 2.8 0.14 0.26

plvs, hd, wrr, shr, shl 19.4 14.9 12.1 2.7 0.13 0.24

plvs, hd, wrl, shr, shl 19.9 15.3 13.0 3.1 0.14 0.27

plvs, hd, wrr, wrl, shr 15.9 15.8 10.8 2.9 0.24 0.50

plvs, hd, wrr, wrl, shl 15.6 15.7 10.9 2.9 0.25 0.46

hd,wrr, wrl, shr, shl 17.7 17.2 12.4 2.9 0.16 0.29

plvs, wrr, shr, shl 24.2 16.2 13.4 2.7 0.12 0.26

plvs, wrl, shr, shl 24.9 18.0 14.1 3.1 0.13 0.25

plvs, hd, shr, shl 29.4 15.8 16.9 2.7 0.14 0.33

plvs, wrr, wrl, shr 20.1 18.7 12.8 2.9 0.26 0.51

plvs, hd, wrr, shr 21.1 16.7 12.3 2.8 0.23 0.40

plvs, hd, wrl, shr 22.5 17.1 13.6 3.2 0.26 0.45

plvs, wrr, wrl, shl 19.3 18.5 12.7 3.0 0.28 0.55

plvs, hd, wrr, shl 20.6 16.8 12.4 2.8 0.22 0.48

plvs, hd, wrl, shl 22.1 18.1 14.1 3.1 0.26 0.49

plvs, hd, wrr, wrl 18.0 19.2 11.4 3.2 0.34 0.96

wrr, wrl, shr, shl 21.6 20.4 15.1 3.1 0.19 0.33

hd,wrr, shr, shl 24.3 19.5 15.2 2.8 0.16 0.33

hd,wrl, shr, shl 22.1 18.7 14.1 3.2 0.17 0.33

hd,wrr, wrl, shr 21.1 19.1 13.9 2.9 0.28 0.57

hd,wrr, wrl, shl 19.8 19.4 13.2 3.0 0.29 0.60

plvs, shr, shl 36.4 17.8 18.0 2.8 0.13 0.30

plvs, shr, wrr 27.5 19.1 14.2 2.9 0.23 0.47

plvs, shr, wrl 29.0 20.2 14.9 3.4 0.24 0.60

plvs, shr, hd 31.0 18.4 16.9 2.7 0.25 0.50

plvs, shl, wrr 26.5 17.9 13.8 2.8 0.26 0.49

plvs, shl, wrl 27.9 20.7 15.3 3.1 0.27 0.55

plvs, shl, hd 29.9 18.3 16.4 3.1 0.26 0.51

plvs, wrr, wrl 22.5 22.9 13.1 3.3 0.31 1.11

plvs, wrr, hd 24.0 22.2 13.3 3.1 0.35 1.24

plvs, wrl, hd 24.7 21.5 13.5 3.3 0.39 1.10

shr, shl, wrr 26.4 19.1 15.5 3.1 0.18 0.40

shr, shl, wrl 25.0 19.8 15.2 3.8 0.19 0.36

shr, shl, hd 31.4 17.9 18.3 2.9 0.17 0.39

shr, wrr, wrl 25.0 22.6 16.5 3.1 0.31 0.72

shr, wrr, hd 24.9 19.8 15.2 2.8 0.26 0.71

shr, wrl, hd 25.3 20.8 15.9 3.1 0.31 0.60

shl, wrr, wrl 24.9 22.5 16.5 3.4 0.33 0.65

shl, wrr, hd 25.0 21.0 15.3 2.9 0.31 0.60

shl, wrl, hd 23.5 20.0 14.7 3.2 0.35 0.64

wrr, wrl, hd 24.0 21.0 14.7 3.0 0.39 1.16

plvs, shr 40.6 20.6 18.7 2.8 0.26 0.72

plvs, shl 41.5 21.5 18.7 3.1 0.28 0.61

plvs, wrr 33.6 24.7 15.4 3.8 0.35 1.35

plvs, wrl 35.9 25.4 16.4 3.9 0.37 1.27

plvs, hd 33.3 21.4 16.8 2.5 0.33 1.32

shr, shl 39.2 24.6 20.1 4.3 0.21 0.47

shr, wrr 28.4 21.5 16.9 3.1 0.29 0.83

shr, wrl 30.7 24.9 19.0 3.3 0.35 0.83

shr, hd 32.9 19.3 19.0 2.9 0.28 0.65

shl, wrr 31.1 24.4 18.2 3.9 0.45 0.85

shl, wrl 27.8 22.4 16.8 3.7 0.38 0.79

shl, hd 33.3 22.1 19.4 3.7 0.36 0.67

shr, wrl 32.1 25.6 20.7 3.3 0.47 1.47

wrr, wrl 27.5 21.7 16.9 2.7 0.40 1.37

wrl, hd 28.2 23.1 17.2 2.9 0.47 1.16

plvs 40.6 29.6 20.6 2.8 0.26 0.72

shr 41.5 26.1 22.1 3.1 0.28 0.61

shl 33.6 28.0 21.7 3.8 0.35 1.35

wrr 35.9 21.8 21.8 3.9 0.37 1.27

wrl 33.3 26.3 24.4 2.4 0.33 1.32

head 39.2 21.4 20.6 4.3 0.21 0.47



Finally, in Table 6, we provide additional comparisons between using synthetic and real IMU data as input. We showed
and discussed selected results in the main paper (Table 2). As explained in the main paper the imperfect sensor-to-bone
callibration and relative motion between sensor and bone during motion are likely the largest contributors to explaining
sim-to-real differences. To give an idea about this error we calculated the average global angular error between the sensor
orientation estimation and the ground truth orientation of the bone to which the sensor is attached for the TotalCapture dataset.
For the synthetic case this error is off course 0 degrees, but we found it to be 9.4 degrees for the real IMU data. Although
this is not a strict upper bound for GA, as the model could learn to ignore extreme positions that would results from wrong
callibration or a moving sensor, it is still important to understand such context when interpreting the errors.

Table 6. Sim-to-real error for selected IMU configurations.

configuration IMU GA [◦] legsLA[◦] backLA[◦] Jitter[-] RE2[m] RE10[m]

plvs, hd, wrr, wrl, shr, shl
real
synthetic

14.4
7.0

14.0
9.0

10.9
7.3

2.8
2.8

0.14
0.09

0.25
0.17

plvs, hd, wrr, shr, shl
real
synthetic

19.4
10.7

14.9
10.2

12.1
8.8

2.7
2.7

0.13
0.10

0.25
0.17

plvs, hd, shr, shl
real
synthetic

24.9
22.3

15.8
11.1

13.4
13.1

2.7
2.5

0.12
0.08

0.26
0.17

plvs, shr, shl
real
synthetic

36.4
28.1

17.8
12.7

18.0
14.2

2.8
2.5

0.13
0.10

0.30
0.21

shr, shl
real
synthetic

39.2
29.9

24.6
17.0

20.1
16.4

4.3
3.1

0.21
0.12

0.47
0.26

head
real
synthetic

39.2
29.9

21.4
17.0

20.6
16.4

4.3
3.1

0.21
0.12

0.47
0.26



D. Additional details
Masses assigned to different SMPL segments are re-

ported in 7.

Table 7. Mass distribution for energy metric calculation. Segment
masses are loosely based on OpenSim2392 [8]

segment
mass[kg]

pelvis 11.7
thigh 9.3
spine1 7.69
spine2 3.84
spine3 3.84
spine4 1.92
collar 1.92
neck+head 1.92
upper arm 2.0
lower arm 1.2
hand 0.35
finger 0.1

Several hyperparameters can be found in Table 8.

Table 8. Hyperparameters for training

Hyperparameter Value
Optimizer AdamW [7]
Learning rate 1e-4
Batch size 256
Training steps 200K
# parameters 34M
Motion duration 3s
Frames per second 20
Diffusion steps 1000
β schedule cosine
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