
PFStorer: Personalized Face Restoration and Super-Resolution
Supplementary Material

This supplementary material contains the following sec-
tions. First, background is provided for the used models.
Next, further details of the user study are provided. Then,
full experimental details and additional experiments of the
personalized model are shown. Finally, the training de-
tails and further experiments of the non-personalized base
restoration model are discussed. As the last section, soci-
etal impact is discussed.

Background
In this section we provide sufficient background to keep
the paper self-sustained. We first introduce latent diffu-
sion models, namely Stable Diffusion [12], as both the used
methods, StableSR [14] and ViCo [3] are based off of it.
Next we provide further details of the base model, StableSR
and the personalization technique ViCo.

Latent Diffusion Models As oppose to diffusion models
[5], LDMs [12] (latent diffusion models) perform the diffu-
sion steps in a latent space. In Stable Diffusion [12] an en-
coder E is first trained to map input images x ∈ RH×W×3

to a latent code z = E(x) ∈ R(H/8)×(W/8)×4, which can be
approximately reconstructed with a decoder D. The diffu-
sion forward and backward steps are then performed within
the latent space. To perform conditional generation using
text y, it is first transformed to an embedding c(y) with a
text embedder. The training loss is then given by:

L = Ez∼E(x),y,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, c(y), t)||22

]
. (1)

Above, at timestep t the diffusion model ϵtheta denoises the
added noise from zt conditioned on the text embedding c(y)
and the timestep t. After training the model can be used to
generate images with a text prompt y and starting from a
zt ∼ N (0, 1) iteratively until all noise is removed at t = 0.

StableSR To exploit the rich generative prior in Stable
Diffusion [12] for image restoration, StableSR [14] uses
conditioning of low-quality images. The entire Stable Dif-
fusion is kept frozen, while a time-aware encoder and spa-
tial feature transformations are added as adapters to condi-
tion the low-quality images. The encoder takes in a low-
quality image and the current time-step of the diffusion
model and outputs feature maps at different resolutions, cor-
responding to the ones in Stable Diffusion’s UNet. The
features are then fed through spatial feature transforms and
added to the output of the original UNet layer’s intermediate
outputs.

The model is trained on high-quality generic natural im-
ages of 2k and 8k resolutions, which are randomly cropped

to 512× 512. This training enables the use of arbitrary size
super-resolution using aggregation sampling. Here, the in-
put is split to overlapping tiles, which are processed by the
model independently. To avoid border artifacts a Gaussian
kernel is used for the fusion of the tiles.

ViCo For efficient and accurate personalization, ViCo
[3] also uses Stable Diffusion as its base. Similarly to
StableSR, ViCo keeps the entire Stable Diffusion frozen.
Only added adapter blocks and a single text-embedding are
trained. Similar to [2], a text-embedding is made learnable
that can be associated with the subject. Additionally, im-
age cross-attention adapters are added to four blocks of the
UNet. These cross-attention layers take the current time-
step’s intermediate result and the intermediate features of
a reference image, which has also gone through the UNet.
To enhance the result, a mask is used to ignore the back-
ground. The mask is obtained from an attention map A =

softmax
(

QKT

√
dk

)
, which is a product of the reference image

and the text-embedding. A regularizer

LPers = ||A⋆/max(A⋆)−AEOT/max(AEOT)||22, (2)

where A⋆ are the similarity logits corresponding to the
learnable token of the text-embedding and AEOT is the end-
of-text token, is used to avoid overfitting. The end-of-text
token < |EOT| > captures a global representation, which
retains good semantics of the personalizable object through
training.

User Study Details
From the light and heavy partitions we randomly select two
images for each identity. From the real data, we select all of
the images. In total we have 20×2+20×2+20×1 = 100
images. With 40 users and two tasks we have a total of
8000 unique answers. As identifying fine-grained details of
an identity, especially not a familiar one, can be difficult,
we chose four images from each identity (light and heavy).
This way the users can get more accustomed to the identities
and make more accurate evaluations for the similarity of the
identity features.

To ensure that the users are being accurate with their an-
notations, we use five control tasks. Here a ground-truth
image is paired with extremely poor quality images. If the
user fails in these tasks, their annotations are likely to be
inaccurate and their results can be potentially invalidated.
To avoid biases with users always choosing A, B or C, we
randomly shuffle the model’s positions.

Figure 1 displays the user interface used for the study.
Users have to read the full instructions before taking the



Figure 1. User interface used in the user study.

study. The instructions detail the two different tasks and
how they should be evaluated.

Amazon Mechanical Turk is used for the study. We fol-
low principles from [11]. We filter users based on the Mas-
ter certificate to ensure quality annotations. For each task
we pay $ 0.04 as suggested in [11].

Personalized Model Additional Experiments
In this section we detail the full experimental settings and
conduct additional experiments of hyperparameters for the
personalized model. In all experiments, excluding the pa-
rameter to be studied other hyperparameters are kept con-
stant. With further fine-tuning of hyperparameters, results
for specific individuals and inputs can be improved.

Settings Followed by community findings that prompts
can improve quality of the restored image, we use both a
positive and a negative prompt. For the positive prompt
we use ”a Photo of * , masterpiece, best quality, realistic,
very clear, professional” and for the negative prompt we
use ”3d, cartoon, anime, sketches, worst quality, low qual-
ity”. We note that including semantic changes in the prompt
like ”red hair” does not have an effect. This is due to the
restoration blocks fusing the low-quality image with the de-
noised image directly. This is in line with the goal of the
paper, as it is a restoration method, not an editing method.

For the classifier-free guidance value we set 4 as a de-
fault for all experiments. Standard DDPM [5] sampling is
used with 200 steps as in StableSR [14]. As the personaliza-
tion fine-tuning approach is about learning a single identity
and not multiple parts of an identity, we find that not us-
ing the 50% random crops improves the results slightly. For
the baseline method DR2 + SPAR [16] we empirically ex-

perimented with several hyperparameters values of N and
τ that are crucial for the performance of the method. N is
a downsampling factor and τ is the output step after which
generation is started. We set N = 8 and τ = 40 as we found
it performed the best across different levels of degradations.
For LMSE (Landmark MSE) [18] was used to obtain land-
marks. In cases where landmarks could not be found due
to the image being severely degraded the MSE was set to
128. Similarly in cases where the MSE was for an image
was more than 128 it was capped to 128 to avoid outliers
due to numerical errors or other errors.

Degradations During testing we synthesized a light and a
heavy degradation to better evaluate our algorithm in differ-
ent situations. During training we use the heavy setting. We
use the settings from StableSR as a base and modify them.
To better suit for real-world applications we include motion
and median blur, as well as adding ISP (Image Signal Pro-
cessing) noise [17].

To ensure our method works in less severe cases, we also
include a light partition during testing. Here, we only in-
clude a first-order noise similar to CodeFormer.

The light portion follows:

ID = {[(I ⊛ kσ)↓r
+ nδ]JPEGq

}↑r
, (3)

where kσ is Gaussian blur kernel, ↓r and ↑r are the down-
samping and upsampling operators, nδ additive Gaussian
noise and [·]JPEGq

is JPEG compression. We sample uni-
formly σ, r, δ and q from [0.1, 10], [1, 4], [0, 2] and
[30, 100], respectively. The additive Gaussian noise has a
probability of 40% and downsampling a probablity of 70%,
while filtering and JPEG compression occur always.

The heavy portion first applies ISP model [17] with a
50% probability, followed by motion and median blur with



5% and 10% probabilities. Next, we use equation 3 and the
same settings except, r and δ are chosen from [1, 10] and
[0, 15], respectively, followed by a sinc filter [14]. Finally,
equation 3 is applied a second time with a 90% probability.

Classifier-Free Guidance Value To further emphasize
the conditional element, CFG [4] can be used to guide the
denoising process. As mentioned earlier, we use a negative
prompt instead of a null one. The formula is given by

X̃ = X + λcfg(X(ppos, ILQ)−X(pneg, ILQ)), (4)

where pneg and ppos correspond to the positive and negative
prompts. We also experimented with null conditioning the
low-quality image

X̃ = X + λcfg(X(ppos, ILQ)−X(pneg,∅)), (5)

but found the results to be of lower-quality, as emphasizing
the low-quality image may exaggerate blurry features.

We experiment using Eq. (4) with different CFG values
λcfg in Fig. 2 and note that λcfg = 1 corresponds to not
using guidance at all. It can be seen that a higher λcfg

can oversature, as in the top row. In the lower row, a low
λcfg loses identity features, whereas in the top row it is
more subtle. From our experiments we observe that dif-
ferent identities behave differently with different λcfg . A
common value in text-to-image applications is λcfg = 7.5,
but to avoid saturation we default to λcfg = 4 in all of our
other experiments.

λcfg = 1 λcfg = 2 λcfg = 4 λcfg = 7.5 GT

λcfg = 1 λcfg = 2 λcfg = 4 λcfg = 7.5 GT

Figure 2. Experiments with different classifier-free guidance val-
ues.

Controlling Identity The used personalization technique
consists of two parts. 1) a learnable text-embedding and 2.
image cross-attention. We experiment with different val-
ues of λatt, which controls the weight of the cross-attention
layers, in Fig. 3. The sample with λatt = 0 corresponds to
only using the learnable text-embedding. We can see that
it contains some identity at a high-level but is missing de-
tails such as wrinkles and dip in the chin. With increasing
λatt the identity features become more prominent, even to

a degree of exaggeration. Similar to CFG values, we have
observed that for different individuals and depending on the
noise levels of the input, λatt acts differently. We chose
λatt = 1 as a default value, although in some cases, like
this sample, the optimal results can be something different.

Default λatt = −0.5 λatt = 0 λatt = 0.1 λatt = 0.25

λatt = 0.5 λatt = 0.75 λatt = 1 λatt = 1.5 GT

Figure 3. Controlling identity. The default corresponds to non-
personalized output. Samples with λatt, use the personalized to-
ken in the prompt.

Number of Reference Images In Fig. 4 we experiment
with how many reference images are required to accurately
capture the identity. With nimg = 0, i.e. no personaliza-
tion, high-level features matching the input can be observed.
With just one reference image, the eyes, eyebrows and other
finer details start to appear. We default to using nimg = 5
as it often performs sufficiently and the addition of more
images has less noticeable effect. For some individuals we
found that even three images can be sufficient, but it should
be noted that the similarities between input image and the
reference images affect the results.

Input nimg = 0 nimg = 1 nimg = 2

nimg = 3 nimg = 5 nimg = 10 GT

Figure 4. Number of images used for personalization. nimg = 0
refers to no personalization.

Randomness with Different Seeds Diffusion models are
stochastic and notorious for unsatisfactory results with dif-
ferent random initializations. Figure 5 contains results for



an image with light and heavy degradations with four dif-
ferent seeds. For the light portion, the outputs tend to be
mostly similar with small differences like skin texture. With
the heavy portion, there are noticeable differences in the
mouth, eyes and colors, although the identity is kept the
same. Interestingly the background logo and text deviate
largely, as they are not part of the learned personalization.

LQ-Light Seed = 0 Seed = 1 Seed = 2 Seed = 3 GT

LQ-Heavy Seed = 0 Seed = 1 Seed = 2 Seed = 3 GT

Figure 5. Random seed effect.

Additional Qualitative Results Here we provide addi-
tional results on the light, heavy and real portions of the
Celeb-Ref [9] dataset. From Fig. 7 row three, we can
see that the DMDNet is able to better preserver the iden-
tity compared to CodeFormer, but compared to ours it is
still missing fine-grained details such as the notch in the
chin. Despite achieving good results with light degrada-
tions, DMDNet struggles with the heavy and real degrada-
tions in Figs. 8 and 9. Although DR2 provides poor results
in several cases, it works well on row 4 of Fig. 8.

Despite the input being very noisy and small in size, our
result is faithful with the identity, while codeformer strug-
gles due to requiring alignment. Figure 6 contains a qual-
itative comparison between different personalization tech-
niques and more results are provided in Figs. 10 and 11.

Additional Quantitative Results To complete the quan-
titative results of heavy portion from ??, the results of light
and real portions are presented.

Table 1 tabulates the results for the real portion. As no
GT is available, we only use MUSIQ [8] and ID [1] as met-
rics. For the ID we use a reference image of the same per-
son. As can be seen from the results, the ID metric drops
significantly compared to the heavy portion, where ID used
GT image. Despite this the rankings of the results remain
similar with ours as first and DMDNet and CodeFormer be-
ing close with similar results and DR2 achieving the low-
est due to blurry results. Base Model + DreamBooth [13]
achieves the best result in ID which is likely due to over-
fitting to the identity, with poor restoration results. Table 2
presents results for the light partition. Our method is con-
sistently among the second best performers, although the
differences between the methods are minor.

Input Base Model Base Model Ours GT
+ DreamBooth + ViCo

Figure 6. Results using different personalization techniques com-
bined with a base restoration model. DreamBooth [13] is not able
to capture all the details and can result in poor-quality images.
ViCo is better able to capture most details, but can still result in
blurry images. Ours is able to capture fine-grained details without
hurting the restoration performance of the Base Model. Zoom in
for best view.

Table 1. Quantitative results for the real portion of the data. Red
indicates the best and blue indicates the second best

Methods Ref MUSIQ ↑ ∗ID ↑
Input 24.84 20.37

StableSR [14] 51.59 23.39
Base Model 60.27 24.29

Base Model + DreamBooth ✓ 55.31 29.78
Base Model + ViCo ✓ 57.67 24.71

DMDNet [9] ✓ 58.36 22.29
DR2 [16] 29.18 18.38

CodeFormer [19] 44.60 22.90
PFStorer (Ours) ✓ 60.11 25.01

∗ Compare with a reference image.

Value of Learnable γ after training Each layer l has
vector γl with the size depending on the layer hidden di-
mension. The values of the mean of the vector for each
layer is around 0.2 and 0.5. The higher importance of 0.5
values is from the middle of the UNet layers, where the res-
olution is lowest and the lower values of 0.2 at the higher
resolution layers.

Non-Personalized Base Model Experiments
In this section we cover the training details and results with
the Base Model without personalization. The model is a
pre-trained StableSR [14] without any modifications to the
architecture. The personalized models all use the fine-tuned
Base Model described in this section as their starting point.

Training The training is performed on a facial dataset
FFHQ [7], which contains 70,000 facial images in the res-
olution of 1024 × 1024. 50% of the data is resized ran-
domly to 512 × 512 and the other 50% are taken as ran-



Table 2. Quantitative results for the light portion of the data. Red
indicates the best and blue indicates the second best

Methods Ref PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ LMSE ↓ ID ↑
Input 22.56 0.719 0.615 58.83 9.74 21.85

StableSR 27.18 0.767 0.337 62.96 5.73 70.62
Base Model 27.72 0.767 0.318 64.16 4.93 72.43

Base Model + DreamBooth ✓ 24.77 0.721 0.419 62.01 14.29 62.57
Base Model + ViCo ✓ 27.58 0.765 0.325 63.04 4.88 73.26

DMDNet [9] ✓ 27.72 0.780 0.312 63.07 6.43 72.66
DR2 [16] 22.17 0.701 0.449 47.36 13.13 30.01

CodeFormer [19] 27.19 0.759 0.293 66.00 5.91 69.13
PFStorer (Ours) ✓ 27.71 0.767 0.309 63.31 4.79 75.39

GT ∞ 1 0 62.37 0 100

dom crops of the same resolution. Fine-tuning is performed
for 12 epochs. At this moment the personalizion adapter is
not attached to the model. We synthesize training data in
the same manner as the personalized model with the heavy
degradation.

Qualitative Results For qualitative results on synthetic
degradation on CelebA-Test split [10], see Fig. 12. The
synthetic degradation for Celeba-Test is obtained from [15].
Compared to CodeFormer [19] our method is able to gen-
erate more fine-grained details, while being more faithful to
the low-quality image, e.g., the color of facial hair on top.
Results from real-world datasets, LFW [6], WebPhoto [15]
and Wider-Test [19] are shown in Fig. 13. In LFW, which
contains less severe degradations, compared to CodeFormer
our method is able to generate more details with sharper
textures. Our method struggles with WebPhoto, as it con-
tains old images with scratches, color degradation and other
untypical degradations. With severe degradation on Wider-
Test, our method is able to generate realistic images, while
CodeFormer struggles with artifacts.

Quantitative Results We provide quantitative results
with standard metrics. Table 3 tabulates results from
CelebA-Test, where the results are taken from [15], except
for CodeFormer and ours. In most of the metrics the results
are similar between GFP-GAN, CodeFormer and ours. In
the real-world datasets, Tab. 4, our method obtains the best
FID for LFW and WIDER.

Table 3. Quantitative results for CelebA-Test with non-
personalized model. Red indicates the best and blue indicates the
second best

Methods PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ FID ↓ ID ↑
Input 25.35 0.684 0.486 58.83 143.98 52.06

DFDNet 23.68 0.662 0.4341 N/A 59.08 59.69
PULSE 21.61 0.620 0.4851 N/A 67.56 30.45

GFP-GAN 25.08 0.677 0.3646 N/A 42.62 65.40
CodeFormer 26.77 0.719 0.343 66.54 52.44 62.73
Base Model 26.03 0.680 0.392 66.57 40.36 63.89

GT ∞ 1 0 63.43 43.43 1

Table 4. Quantitative results for real-world datasets with non-
personalized model. Red indicates the best and blue indicates the
second best

Dataset LFW-Test WebPhoto-Test WIDER-Test
Degradation mild medium heavy

Methods FID↓ MUSIQ↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑
Input 137.56 25.05 170.11 19.24 202.06 15.57

PULSE 64.86 66.98 86.45 66.57 73.59 65.36
DFDNet 62.57 67.95 100.68 63.81 57.84 59.34

GFP-GAN [15] 49.96 68.95 87.35 68.04 40.59 68.26
CodeFormer [19] 52.02 71.43 78.87 70.51 39.06 69.31

Base Model 44.11 66.57 80.90 62.69 34.72 63.91
Light degradation 44.02 62.69 84.81 57.64 82.93 51.66

Ablation: Heavy Degradation We show that with more
complex degradations the method is able to perform better
in cases with severe degradation. The results are tabulated
in bottom of Tab. 4. Base Model uses the heavy degrada-
tion, where as the Light degradation does not. For LFW,
which has relatively mild degradations, the performance be-
tween Base Model and simple degradation does not change
drastically as expected. However, for WIDER-Test we can
see a large difference as the FID more than doubles from
34.72 to 82.93, meaning a significant decrease in quality.
Using heavy degradation results in higher quality outputs
under severe degradation, while having minimal effect on
mild cases.

Societal Impact

Machine learning models can learn biases from their
datasets. We show that our model is capable of working
with different ethnicities and skin tones, while acknowledg-
ing that the testing is limited. We also note that since our
model is built upon previous models, it inherits any biases
these models may contain. To avoid misunderstanding of
the capabilites of our models, e.g., using it for enhancing
security footage for criminal investigations, we have shown
the limitations in experiments and emphasize that the iden-
tity of the restored individual needs to be known before-
hand. Malicious users may want to mislead viewers with
generated images, which is a common common issue with
existing similar methods. However, recent approaches in
detecting fake imagery are improving rapidly.

Privacy and Image Copyrights In this paper we show-
case several pictures of individuals. Several images are
from the publicly available Celeb-Ref dataset [9]. Images
shown from the collected 20 image dataset are of well-
known celebrities and are under a Creative Commons li-
cense. Real world images not part of the collected dataset
are under public domain or a Creative Commons license.



Input CodeFormer DMDNet DR2+SPAR Ours GT

Figure 7. Qualitative comparison with state-of-the-art restoration models on Celeb-Ref dataset [9] with synthetic light degradation.
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Input Base Model Base Model Ours GT
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Figure 10. Results using different personalization techniques combined with a base restoration model with heavy degradation.



Input Base Model Base Model Ours GT
+ DreamBooth + ViCo

Figure 11. Results using different personalization techniques combined with a base restoration model with light degradation.



Input CodeFormer Base Model GT

Figure 12. Qualitative comparison with state-of-the-art restoration models on CelebA-Test [10] with synthetic degradation.

Input CodeFormer Base Model Input CodeFormer Base Model
LFW-Test LFW-Test

Input CodeFormer Base Model Input CodeFormer Base Model
WebPhoto WebPhoto

Input CodeFormer Base Model Input CodeFormer Base Model
Wider-Test Wider-Test

Figure 13. Qualitative comparison with state-of-the-art restoration models on LFW [6], WebPhoto [15] and Wider-Test [19].


