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A. Image Encoder Configurations
In our work, we introduce 3 stage configurations for FastViT
architecture that substantially improves the model with lim-
ited impact on latency. The three configurations are de-
scribed in Tab. 9. Comparison of our image encoders with
FastViT image encoder when trained on ImageNet-1k dataset
in a supervised setting (described in Appx. B) is shown
in Fig. 7.

Variant {C1, C2, C3, C4} {L1, L2, L3, L4}
MCi0 {64, 128, 256, 512} {2, 6, 10, 2}
MCi1 {64, 128, 256, 512} {4, 12, 20, 4}
MCi2 {80, 160, 320, 640} {4, 12, 24, 4}

Table 9. Configurations of MCi.

B. Experimental Setup
Additional details of our training and evaluation are provided
in this section. Table 12 summarizes the hyperparameters we
used to train MobileCLIP-B on DataCompDR-1B. For other
variants of MobileCLIP (S0, S1, and S2) we use the same
hyperparameters except using � = 1.0. For experiments
on DataCompDR-12M we use global batch size of 8192.
All models trained on DataComp(-DR) use strong image
augmentation unless stated otherwise.

For our ensemble distillation ablations in Appx. D, we use
32 total A100 GPUs but we use the same global batch size of
8192 as our other ablations. We also use a smaller uniformly
sampled DataComp-8M for ablations in Apps. C and D that
results in a slightly lower performance than DataCompDR-
12M used for the rest of ablations.

The seen samples reported for DataCompDR is a triplet of
one randomly augmented image, one ground-truth caption,
and one randomly picked synthetic caption. The reported
number of iterations is the number of seen samples divided
by the global batch size.

For ImageNet-1k experiments, we follow the training
recipe prescribed in [38, 59], i.e. the models are trained for
300 epochs using AdamW optimizer with weight decay of
0.05 and peak learning rate 10�3 for a total batch size of
1024. The number of warmup epochs is set to 5 and cosine
schedule is used to decay the learning rate. The teacher
model for distillation is RegNetY-16GF [48] Our implemen-
tation uses Timm library [66] and all the models were trained
on single machine with 8⇥NVIDIA A100 GPUs. The hy-
perparameters for the three variants of MCi are detailed in
Tab. 10. The performance of MCi variants is detailed in
Tab. 11 and compared against recent state-of-art efficient

architectures. MCi obtains the best trade-off amongst recent
efficient architectures as seen in Fig. 7.

Hyperparameter Training
MCi0, MCi1, MCi2

Stochastic depth rate [0.0, 0.05, 0.15]
Input resolution 256⇥256
Data augmentation RandAugment
Mixup ↵ 0.8
CutMix ↵ 1.0
Random erase prob. 0.25
Label smoothing 0.1
Train epochs 300
Warmup epochs 5
Batch size 1024
Optimizer AdamW
Peak learning rate 1e-3
LR. decay schedule cosine
Weight decay rate 0.05
Gradient clipping 7
EMA decay rate 0.9995

Table 10. Training hyperparameters for ImageNet-1k experiments.

C. Image Augmentation
In this section we provide a detailed ablation on the effect
of image augmentations. The training setup is the same as
training with DataCompDR-12M presented in Sec. 5.2, ex-
cept we used an 8M subset for this ablation. In Tab. 13 we
show classification and retrieval performance of a ViT-B/16
based CLIP model trained with our final loss as in Eq. (3)
(� = 1) and different image augmentations. Note that we

Model Eval Param FLOPs Mobile Top-1
Image Latency Acc.
Size (M) (G) (ms) (%)

MobileViG-M [44] 224 14.0 1.5 1.4 80.6
SwiftFormer-L1 [53] 224 12.1 1.6 1.5 80.9
EfficientFormerV2-S2 [38] 224 12.6 1.3 1.6 81.6
FastViT-SA12 [62] 256 11.5 1.9 1.5 81.9
MCi0 (ours) 256 11.8 2.4 1.5 82.2

MobileViG-B [44] 224 26.7 2.8 2.3 82.6
SwiftFormer-L3 [53] 224 28.5 4.0 2.6 83.0
EfficientFormerV2-L [38] 224 26.1 2.6 2.6 83.3
FastViT-SA24 [62] 256 21.5 3.8 2.4 83.4
MCi1 (ours) 256 21.9 4.7 2.5 83.8

FastViT-MA36 [62] 256 43.9 7.8 4.3 84.5
MCi2 (ours) 256 36.3 7.8 3.6 84.5

Table 11. Comparison of MCi variants with recent state-of-the-art
models on ImageNet classification task.



Figure 7. Top-1 Accuracy on ImageNet v/s latency plot of MCi
variants and recent state-of-the-art architectures.

Hyperparameter Value
MobileCLIP-B, S0, S1, S2

Input resolution 2242, 2562, 2562, 2562
Context length 77
Data augmentation RandAugment
Random resize crop scale [0.08, 1.0]
Random resized crop ratio [0.75, 1.33]
RangeAugment target value (40, 20)
Train iterations 200k
Warmup iterations 2k
Global batch size 65536
Optimizer AdamW
AdamW beta1 0.9
AdamW beta2 0.95
Max learning rate 1e-3
Min learning rate 1e-6
LR. decay schedule cosine
Weight decay rate 0.2
Gradient clipping 7
Mixed precision BFloat16
EMA decay rate 0.9995
CLIP loss weight 0.25
KD loss weight 0.75
GT caption weight 1.0
Synth. caption weight 1.0
Synth. teacher coca_ViT-L-14
Teacher 1 openai-ViT-L-14
Teacher 2 datacomp_xl_s13b_b90k-ViT-L-14
Teacher resolution 224⇥224

Table 12. Training hyperparameters for our CLIP experiments on
DataCompDR.

feed the same augmented image to both teacher and student
models. First, we consider RandomResizedCrop (RRC)
with three magnitudes (0.08, 0.4, 0.9) determining the lower
bound of random area of the crop (smaller lower bound
means stronger augmentation). We observe that strong RRC
results in significant accuracy improvement both for clas-
sification and retrieval metrics. While using strong RRC
augmentation is standard for supervised training, for CLIP
training the widely used recipe [47] includes weak RRC
(lower-bound for scale= 0.9).

We further utilize RangeAugment [42] to automatically
adjust Brightness, Contrast, and Noise. We use PSNR metric
with target range [20, 40] and a Cosine curriculum. Since in
RangeAugment individual augmentation magnitudes are
adjusted dynamically during training, they cannot be stored
as part of the dataset reinforcement process. Hence, we
only apply it to images fed to the student model. We show
that if the same augmentation is applied to both student and
teacher (not feasible for our dataset reinforcement approach)
further improvement can be obtained (56.6% vs 55.9% on
ImageNet-val).

Finally, we consider RandomHorizontalFlip,
RandomErasing [78], and RandAugment [6], and
find that only RandAugment is beneficial in our setup.
Our reinforced datasets include parameters of RRC
and RandAugment and during training time we apply
RangeAugment to images fed to the student model.

Image Augmentations Zero-shot CLS Flickr30k Ret. COCO Ret. Avg Perf.
IN-val IN-shift I2T T2I I2T T2I on 38

RandomResizedCrop: 0.9-1.0
Student-RangeAugment [42] 51.0 40.1 54.2 68.5 30.5 45.3 45.9

RandomResizedCrop: 0.4-1.0
Student-RangeAugment 55.0 43.9 60.4 76.0 34.1 48.4 48.9

RandomResizedCrop: 0.08-1.0
Student-RangeAugment 55.9 44.6 58.8 76.1 34.2 49.0 49.6

RandomResizedCrop: 0.08-1.0 56.4 44.6 59.8 74.6 34.4 49.3 49.1
RandomResizedCrop: 0.08-1.0
Student&Teacher-RangeAugment 56.6 44.9 60.2 74.0 34.9 50.5 50.8

RandomResizedCrop: 0.08-1.0
Student-RangeAugment

RandomHorizontalFlip: p=0.5
55.9 44.7 59.4 75.9 34.4 49.2 48.8

RandomResizedCrop: 0.08-1.0
Student-RangeAugment

RandomErasing [78]: p=0.25
55.8 44.5 59.4 75.3 34.5 49.7 49.1

RandomResizedCrop: 0.08-1.0
Student-RangeAugment

RandAugment [6]
56.6 45.4 60.9 78.3 35.0 51.0 50.2

Table 13. Ablation on different augmentations for distillation. We
highlight our choice with blue .

D. CLIP Ensembles
In this section we provide a detailed ablation on CLIP en-
sembles. First, we show that we can construct more accurate
zero-shot models by ensembling pretrained individual CLIP
models. For inference, we concatenate normalized embed-
dings of each modality followed by a re-normalization. In
Tab. 14 we show performance of some CLIP ensemble mod-
els that we picked from OpenCLIP [29]. We also include
performance of individual models. Evidently, ensembling
results in improved performance. For example, an ensem-
ble of two pretrained ViT-L-14-based CLIP models from
datacomp_xl_s13b_b90k and openai results in av-
erage performance of 67.3%, while each individual model
has 66.3% and 61.7% performance, respectively. Further,
ensembling can be a more parameter efficient approach to
obtain a stronger model. For instance, the ensemble of two
ViT-L-14-based CLIP models has less parameters than the
one with ViT-bigG-14 image encoder, but comes with



the same ImageNet-val performance (80.1%). In general,
given a set of pretrained CLIP models (e.g., as in Open-
CLIP [29]) with this approach we can push state-of-the-art
and obtain stronger zero-shot performance. Here, we show
and ensemble of four CLIP models can reach up to 81.7%
zero-shot classification performance on ImageNet-val, while
individual models’ performance is not more than 80.1%. As
stronger individual models become publicly available, one
can create stronger ensembles with this approach.

In this work, we are interested in creating a strong ensem-
ble model to be used as a teacher in the context of distillation.
In Tab. 15 we show performance of a ViT-B/16 CLIP model
trained with different CLIP models as teacher (both indi-
vidual models and ensembles). Training setup is the same
as that of in Sec. 5.2, except we use a uniformly sampled
8M subset. Similar to standard distillation for classification
task [26], we observe that more accurate CLIP models are
not necessarily better teachers. We picked the ensemble of
two ViT-L-14-based CLIP models as the teacher model
(highlighted in blue) in our dataset reinforcement process.

E. Ablations on Lossy Compressions
In general, the storage size of datasets depends on the file
format and the tradeoff between load time and the com-
pression rate. In Tab. 4c we presented the storage sizes for
DataCompDR-12M and DataCompDR-1B with BFloat16
compression of the embeddings. In this section, we further
analyze the storage reduction by i) reducing the number of
augmentations, and ii) lossy compression of embeddings.

We report the total storage size for 12.8k samples of
DataCompDR in Tab. 16. The storage size for DataCompDR-
12M can be easily deduced by multiplying the numbers by
1000 (TBs instead of GBs) and by 105 for DataCompDR-1B.

Table 17 shows the accuracy of training with BFloat16
embeddings achieves accuracies within the standard devia-
tion of the training on DataComp-12M.

F. Hybrid Text Encoder
In this section, we ablate over kernel dimensions for our hy-
brid text encoder. For this ablation, we use a 6-layered fully
convolutional text encoder and systematically increase the
kernel size. We use ViT-B/16 as the image encoder for these
runs. These models were trained on DataCompDR-12M for
30k iterations. From Tab. 18, we notice that zero-shot IN-val
performance does improve with increased kernel size, but it
is significantly more expensive to run the model on mobile
device. For zero-shot IN-val performance improvement of
1.1%, the model is 4.5⇥ slower. From Tab. 18, kernel size
of 11 obtains the best accuracy-latency trade-off.

For the hybrid design, we use depth-wise 2D convolu-
tional layers. We reshape the 3 dimensional input tensor to
(BC1S) format, i.e. (Batch Size, Channel Dim.,

1, Seq. length) before feeding the tensor to the con-
volutional layer. For CLIP, the sequence length is set to 77.
The depth-wise convolutions enable interactions between to-
kens across the sequence. The FFN layers enable interactions
between token’s channel dimensions. Since the convolution
layer is 2D, we simply reuse the reparameterization process
described in [62].

G. Performance of other models on
DataCompDR-12M

In Tab. 19, we compare performance of CLIP models
with different sized image encoders when trained on
DataCompDR-12M. All models enjoy significant accuracy
improvement when trained on DataCompDR-12M with no
training overhead. For example, even the smallest model
like MobileNetV3-L with only 4.9M parameters obtains a
significant 10.6% improvement in zero-shot IN-val perfor-
mance.

H. Extended Results
In this section we provide extended zero-shot results of
our proposed family of CLIP models: MobileCLIP-S0,
MobileCLIP-S1, MobileCLIP-S2, and MobileCLIP-B. Zero-
shot classification and retrieval results are provided in
Tab. 20. We also include additional results from related
works where only partial evaluation is available.

I. Long training
In Tab. 21 we provide results for training MobileCLIP-B
on more than 13B seen samples. We explore continuing
the training of MobileCLIP-B to reduce the cost of training
from scratch. Recently, [19] has shown that large scale CLIP
models can be continually pretrained as the data distribu-
tion varies with time. We utilize some of their recipes for
continual training where we initialize the training with a
model previously trained with cosine or constant learning
rate schedule and restart the training on DataCompDR-1B.
We utilize a short warmup to stabilize the training and then
use another constant or cosine learning rate schedule with
maximum and minimum values equal to the original training.
We train using 64 nodes with 8xA100-80GB GPUs and a
per-GPU batch size of either 128 or 256. One seen sample
for DataCompDR is a triplet of one randomly augmented
image, one ground-truth caption, and one randomly picked
synthetic caption. Number of iterations is the number of
seen samples divided by the global batch size. Note that
training wall-clock time is the same for DataCompDR vs
DataComp (Tab. 4d).

Compared with our initial training on 13B seen samples,
our long training with 39B total seen samples achieves 0.6%
improvement in average performance on 38 datasets as well
as 0.4% improvement in zero-shot IN-val accuracy. We reach



Teacher Teacher Teacher Zero-shot CLS Flickr30k Ret. COCO Ret. Avg Perf.
Models(s) Pre-taining(s) Resolution(s) IN-val IN-shift I2T T2I I2T T2I on 38

ViT-bigG-14 laion2b_s39b_b160k 224 80.1 69.1 79.6 92.9 51.4 67.4 66.7
EVA01-g-14-plus merged2b_s11b_b114k 224 79.3 69.3 79.0 91.7 50.3 68.2 66.2

ViT-L-14 datacomp_xl_s13b_b90k 224 79.2 67.9 73.4 89.0 45.7 63.3 66.3
ViT-L-14 openai 224 75.5 64.9 65.0 85.2 36.5 56.3 61.7

ViT-L-14-336 openai 336 76.6 67.1 66.9 87.7 37.1 57.9 62.8

ViT-L-14

ViT-L-14

datacomp_xl_s13b_b90k

openai

224
224 80.1 69.6 74.5 92.3 46.7 66.5 67.3

ViT-L-14

ViT-L-14-336

datacomp_xl_s13b_b90k

openai

224
336 80.5 70.6 75.8 91.8 47.0 67.0 67.8

EVA01-g-14-plus

ViT-L-14

ViT-L-14

merged2b_s11b_b114k

datacomp_xl_s13b_b90k

openai

224
224
224

81.1 70.9 78.1 93.8 50.2 69.7 68.5

EVA01-g-14-plus

ViT-L-14

ViT-L-14-336

merged2b_s11b_b114k

datacomp_xl_s13b_b90k

openai

224
224
336

81.2 71.6 78.8 93.7 50.2 69.9 68.9

convnext_xxlarge

ViT-L-14

ViT-L-14-336

laion2b_s34b_b82k_augreg_soup

datacomp_xl_s13b_b90k

openai

256
224
336

81.5 71.7 79.0 94.5 50.5 69.5 68.7

ViT-bigG-14

EVA01-g-14-plus

ViT-L-14

ViT-L-14

laion2b_s39b_b160k

merged2b_s11b_b114k

datacomp_xl_s13b_b90k

openai

224
224
224
224

81.6 71.7 79.9 94.6 52.4 71.3 69.4

EVA01-g-14-plus

ViT-L-14-336

ViT-L-14

convnext_xxlarge

merged2b_s11b_b114k

openai

datacomp_xl_s13b_b90k

laion2b_s34b_b82k_augreg_soup

224
336
224
256

81.7 72.1 80.0 95.0 52.0 70.8 69.3

ViT-L-14

ViT-L-14-336

RN50x64

RN50x16

openai

openai

openai

openai

224
336
384
448

78.2 68.9 73.4 89.7 42.0 63.5 65.5

Table 14. Zero-shot evaluation of (ensemble of) clip models. Each group of rows corresponds to an ensemble teacher. All models are taken
from OpenCLIP [29] on Aug-2023. We highlight our choice with blue .

similar improvements in average performance on 38 datasets
(0.4%) with only 18B total seen samples by continuing our
original training on 13B seen samples with a short training
using Cosine(40k, 131k, 2k).



Teacher Teacher Teacher Zero-shot CLS Flickr30k Ret. COCO Ret. Avg Perf.
Models(s) Pre-taining(s) Resolution(s) IN-val IN-shift I2T T2I I2T T2I on 38

ViT-bigG-14 laion2b_s39b_b160k 224 53.4 42.6 59.6 76.2 35.8 52.1 47.8
EVA01-g-14-plus merged2b_s11b_b114k 224 54.5 43.3 59.6 74.6 35.4 50.8 47.7

ViT-L-14 datacomp_xl_s13b_b90k 224 54.0 43.4 58.9 74.3 34.3 50.1 48.3
ViT-L-14 openai 224 54.4 42.7 54.5 69.1 29.7 44.6 47.2

ViT-L-14-336 openai 336 54.2 43.3 53.6 68.7 30.1 44.3 47.2

ViT-L-14

ViT-L-14

datacomp_xl_s13b_b90k

openai

224
224 56.3 44.8 59.2 74.5 34.4 49.9 49.6

ViT-L-14

ViT-L-14-336

datacomp_xl_s13b_b90k

openai

224
336 55.9 44.6 58.8 76.1 34.2 49.0 49.6

EVA01-g-14-plus

ViT-L-14

ViT-L-14

merged2b_s11b_b114k

datacomp_xl_s13b_b90k

openai

224
224
224

56.2 45.0 59.6 76.9 35.7 51.5 49.4

EVA01-g-14-plus

ViT-L-14

ViT-L-14-336

merged2b_s11b_b114k

datacomp_xl_s13b_b90k

openai

224
224
336

56.0 44.5 60.1 76.5 35.3 50.6 49.5

convnext_xxlarge

ViT-L-14

ViT-L-14-336

laion2b_s34b_b82k_augreg_soup

datacomp_xl_s13b_b90k

openai

256
224
336

55.8 44.4 59.4 75.1 35.0 49.5 50.1

ViT-bigG-14

EVA01-g-14-plus

ViT-L-14

ViT-L-14

laion2b_s39b_b160k

merged2b_s11b_b114k

datacomp_xl_s13b_b90k

openai

224
224
224
224

56.3 44.6 60.8 76.2 35.8 51.4 49.2

EVA01-g-14-plus

ViT-L-14-336

ViT-L-14

convnext_xxlarge

merged2b_s11b_b114k

openai

datacomp_xl_s13b_b90k

laion2b_s34b_b82k_augreg_soup

224
336
224
256

55.9 44.6 60.4 75.1 35.6 52.3 49.4

ViT-L-14

ViT-L-14-336

RN50x64

RN50x16

openai

openai

openai

openai

224
336
384
448

56.4 44.6 57.9 72.0 31.7 47.0 48.6

Table 15. Ablation on using different (ensemble of) teacher models in our multi-modal distillation. Each group of rows demonstrate an
ensemble teacher. Student architecture is fixed to ViT-B/16 for image encoder and base 12-layer Transformer for text encoder (MobileCLIP-B
setup). For this ablation, we use an 8M subset of DataComp and train all experiments for 20k iterations with global batch size of 8k. All
models are imported from OpenCLIP [29] on Aug-2023. We highlight our choice with blue .

Image Text Syn. Aug.
Params

Text
Emb.

Image
Emb. BFloat16 Sparsity Size

(GBs)

3 3 7 7 7 7 7 7 0.9

3 3 3 3 7 7 7 7 0.9
3 3 3 3 5+1 30 7 7 3.3
3 3 3 3 5+1 30 3 7 1.9
3 3 3 3 5+1 30 7 50% 1.8
3 3 3 3 5+1 30 3 50% 1.3
3 3 3 3 5+1 10 7 7 1.9
3 3 3 3 5+1 10 3 7 1.4
3 3 3 3 5 5 7 7 1.5
3 3 3 3 5 5 3 7 1.2
3 3 3 3 2 2 7 7 1.1
3 3 3 3 2 2 3 7 1.0

Table 16. Total storage for 12.8k samples stored in individual Pickle
Gzip files. Storage for 12.8M and 1.28B samples are approximately
the same numbers in TBs and 100 TBs.

Num. Aug. 1 2 5 10 15 20 25 30

w/o BFloat16 60.63 63.27 64.81 64.74 64.49 64.92 64.78 64.74
w/ BFloat16 - - 64.32 64.88 64.57 64.81 65.13 64.91

Table 17. Effect of BFloat16 and the number of augmentations on
ImageNet-val zero-shot Accuracy. We train on DataCompDR-12M
for approximately 30 epochs.

Kernel Size 3 11 31

Num Params. (M) 38.2 38.3 38.4
Latency (ms) 1.0 1.2 5.4

IN-val 56.3 57.9 59.0

Table 18. Ablation on kernel size for text encoder. We train for 30k
iterations. We highlight our choice with blue

Image Enc. Dataset # Image Enc.
Params (M)

Latency (ms)
(img+txt) 0-shot IN-val �

MobileNetv3-L DataComp-12M 4.9 1.1 + 3.3 34.1
DataCompDR-12M (Ours) 44.7 "+10.6

ViT-T/16 DataComp-12M 5.6 3.0 + 3.3 32.9
DataCompDR-12M (Ours) 44.1 "+11.2

ResNet-50 DataComp-12M 24.6 2.6 + 3.3 40.4
DataCompDR-12M (Ours) 51.9 "+11.5

FastViT-MA36 DataComp-12M 43.5 4.3 + 3.3 45.2
DataCompDR-12M (Ours) 58.9 "+13.7

Table 19. DataCompDR-12M vs. DataComp-12M. All the models
are trained for 30k iterations (⇠ 0.24B seen samples).



Name
ImageNet Shifts CLS Flickr30k Retrieval COCO Retrieval

val A R O S V2 Obj T!I I!T T!I I!T

@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

MobileCLIP-B 76.8 58.7 89.6 41.4 64.5 69.8 69.4 77.3 94.4 96.7 91.4 99.1 99.9 50.6 74.9 82.9 68.8 88.3 92.9
MobileCLIP-S2 74.4 49.3 87.0 46.9 62.2 66.8 66.6 73.4 92.3 95.6 90.3 98.9 99.6 45.4 70.1 79.0 63.4 85.1 91.4
MobileCLIP-S1 72.6 40.3 84.7 50.5 60.3 64.9 63.4 71.0 91.3 95.3 89.2 98.0 99.5 44.0 68.9 77.7 62.2 84.3 90.1
MobileCLIP-S0 67.8 26.5 78.6 53.8 55.5 59.9 55.9 67.7 88.8 93.3 85.9 97.1 98.8 40.4 66.0 75.9 58.7 81.1 88.2

DIME-FM-B/32 [56] 66.5 32.2 69.8 (-) 46.5 58.9 43.2 (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)
VeCLIP-B/16 [32] 64.6 (-) (-) (-) (-) 57.7 (-) 76.3 93.5 96.4 91.1 98.5 99.7 48.4 73.3 81.8 67.2 87.3 92.7
TinyCLIP-63M/32 [68] 64.5 22.8 74.1 (-) 50.8 55.7 31.2 66.0 (-) (-) 84.9 (-) (-) 38.5 (-) (-) 56.9 (-) (-)
CLIPA-B/16 [34] 63.2 26.8 73.2 (-) 48.7 55.6 44.3 58.3 (-) (-) 75.3 (-) (-) 35.2 (-) (-) 53.1 (-) (-)

Table 20. Extended zero-shot evaluations. We also include additional results from related works where the full DataComp [18] evaluation
was not accessible. Numbers are read from the corresponding papers. For each method we picked their best model up to ViT-B/16 size.
Please see Tab. 7 for additional details including runtime benchmarking. Models are sorted by their zero-shot classification performance on
ImageNet-val. Here our MobileCLIP-S1 is fully trained with 13B seen samples.

LR Schedule Seen
Samples

Zero-shot CLS Flickr30k Ret. COCO Ret. Avg. Perf.
on 38IN-val IN-shift T!I I!T T!I I!T

Cosine(200k, 65k, 2k) 13B 76.8 65.6 77.3 91.4 50.6 68.8 65.2
Const(300k, 65k, 2k) + Cosine(40k, 131k, 2k) 25B 77.1 65.8 77.0 91.8 50.2 68.7 65.2
Const(300k, 65k, 2k) + Cosine(300k, 65k, 2k) 39B 77.2 66.1 76.9 92.3 50.0 68.7 65.8
Const(200k, 65k, 2k) + Cosine(40k, 131k, 2k) 18B 77.1 65.9 77.0 92.8 50.3 69.1 64.6
Cosine(200k, 65k, 2k) + Cosine(40k, 131k, 2k) 18B 76.8 65.6 76.8 92.1 50.4 69.1 65.6
Cosine(100k, 131, 2k) + Cosine(40k, 131k, 2k) 18B 77.0 65.6 77.2 91.3 50.2 69.2 64.2

Table 21. MobileCLIP-B long and continual training. Retrieval performances are reported @1. Last column shows average performance
on 38 datasets as in OpenCLIP [29]. The learning rate schedules are specified as Cosine/Const(num-iterations, global batch-size, warmup-
iterations). We highlight numbers within 0.2% of the maximum in each column.


