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1. Outline

Our supplementary material provides additional derivations
and experiments to support the material in the main paper.
In Sec. 2, we write out in full the absolute pose constraints
from scale and orientation features (as mentioned in Sec. 3.4
in the main paper). In Sec. 3, we analyze robust estimation
performance, noise interactions (as mentioned in Sec. 4.1
in the main paper), and degenerate configurations through
experiments on synthetic data. In Sec. 4 we discuss affine
feature extraction. In Sec. 5 we discuss inlier scoring and
pose refinement.

2. Systems of equations for minimal solvers

2.1. P2ORI

The general absolute pose problem has six DOFs (three for
rotation, three for translation), and thus, we need a system
of six independent equations to solve it. In our case, each
correspondence provides five constraints in total: two from
the point projection (Eqs. 6 and 7 in the main paper) and
three from the scale and orientation (Eqs. 2, 3, and 5 in
the main paper). Thus, one correspondence is insufficient
and we need two correspondences to solve the full 6DoF
problem.

Two correspondences provide us with ten equations of
which six are sufficient to solve the problem. It is natural
to use the four point projection constraints (Eqs. 6 and 7),
since they are not affected by other types of noise. We need
one additional constraint per observation to remove the two
remaining DOFs, which could be Eqs. 2, 3, 4 or 5. We
chose Eq. 4 because Eqs. 2 and 3 require both orientation
and scale and Eq. 5 is quadratic and thus would result in a
more complex solver. Here, we write out a complete deriva-
tion of the constraint on the orientations (Eq. 4).

For ease of reading, we repeat here the form of the affine

matrix from Eq. 1 in the main paper:

A =
d

m
(R1:2,1:2(n

T
refp̃ref)− (R1:2,:p̃ref)nref

T
1:2−

pquery(R3,1:2(n
T
refp̃ref)− (R3,:p̃ref)nref

T
1:2)) ,

(1)

where p̃ref = [pT
ref 1]T , nref = Rrefn, and m =

nT
refp̃ref(d(R3,:p̃ref) + t3).

We introduce the following substitutions:

b = (nT
refp̃ref), (2)

p′
ref = Rp̃ref, (3)

to rewrite Eq. (1) in a condensed form:

A =
d

m
(bR1:2,1:2 − p′

ref1:2nref
T
1:2−

pquery(bR3,1:2 − p′ref3nref
T
1:2))

, (4)

and m = b(dp′ref3 + t3).
Recall that a1, a2, a3, a4 are the elements of A in row-

major order. Now we have

a1 =
d

m
(br11 − p′ref1nref1 − pquery1(br31 − p′ref3nref1)),

(5)

a2 =
d

m
(br12 − p′ref1nref2 − pquery1(br32 − p′ref3nref2)),

(6)

a3 =
d

m
(br21 − p′ref2nref1 − pquery2(br31 − p′ref3nref1)),

(7)

a4 =
d

m
(br22 − p′ref2nref2 − pquery2(br32 − p′ref3nref2)).

(8)

The system of equations for the P2ORI solver combines
the projection constraints (Eqs. 6 and 7) with Eq. 4, re-
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written here for convenience:

crefsquerya1 + srefsquerya2 − crefcquerya3 − cquerysrefa4 = 0.
(9)

Plugging Eqs. (5) to (8) into Eq. (9) gives

crefsquery(br11 − p′ref1nref1 − pquery1(br31 − p′ref3nref1))

+srefsquery(br12 − p′ref1nref2 − pquery1(br32 − p′ref3nref2))

−crefcquery(br21 − p′ref2nref1 − pquery2(br31 − p′ref3nref1))

−cquerysref(br22 − p′ref2nref2 − pquery2(br32 − p′ref3nref2))

= 0,

(10)

where we have multiplied both sides by m
d to make the

equation linear in the unknown query rotation matrix and
translation vector and remove d which is common to all
terms. After parameterizing the rotation matrix with the
Cayley parameterization, the equation becomes non-linear.

2.2. UP1SIFT

In the gravity-aware case, we assume that we have a mea-
surement of the current gravity direction in the query cam-
era’s coordinate system. Assuming that the Y -axis of the
world coordinate system is aligned with gravity, from the
current measurement of gravity, we can determine a rota-
tion RXZ which rotates the Y -axis of the world coordinate
system to align with the observation of gravity in the cam-
era’s coordinate system. The remaining unknown rotation
RY is a rotation about the gravity direction, and thus the
rotation is reduced to a single DOF. The complete query
camera rotation can be written as Rquery = RY RXZ .

Since we have four DOF and a single observation, we
need to add two constraints to the point projection con-
straints (Eqs. 6 and 7), which could be any combination of
Eqs. 2, 3, 4, or 5. We opted not to use Eq. 5, since it is
quadratic in A, leaving Eq. 2, 3, or 4. We chose Eqs. 2, 3,
although the combinations of Eqs. 2 and 4 or Eqs. 3 and 4
would likely lead to similar solvers.

The system of equations for the UP1SIFT solver com-
bines the point projection constraints (Eqs. 6, 7) with Eqs. 2
and 3, rewritten here for convenience:

a1cref + a2sref − qcquery = 0, (11)
a3cref + a4sref − qsquery = 0, (12)

Plugging Eqs. (5) to (8) into Eqs. (11) and (12) gives

dcref(br11 − p′ref1nref1 − pquery1(br31 − p′ref3nref1))

+dsref(br12 − p′ref1nref2 − pquery1(br32 − p′ref3nref2))

−mqcquery = 0,

(13)

dcref(br21 − p′ref2nref1 − pquery2(br31 − p′ref3nref1))

+dsref(br22 − p′ref2nref2 − pquery2(br32 − p′ref3nref2))

−mqsquery = 0,

(14)

where we have multiplied both sides of the equations by
m to make them linear in the unknown query rotation ma-
trix and translation vector. After parameterizing the rota-
tion matrix with the tangent half-angle parameterization, the
equations become non-linear.

3. Extra synthetic data experiments

3.1. Robust estimation

To evaluate the efficiency of the various solvers in robust
estimation in a controlled experiment, we tested each solver
inside MSAC [3, 8] and Locally Optimized MSAC (LO-
MSAC) [2, 4] on synthetic data problems with random out-
liers. LO-MSAC helps mitigate noise in the observations
by using non-linear optimization to refine minimal sample
solutions and grow the inlier set obtained from a minimal
sample. We used the implementations of MSAC and LO-
MSAC provided in RansacLib [7].

We increased the outlier rate from 0 to 0.9 and calculated
the average timing of each method at each setting. Outliers
were introduced by setting a proportion of the observations
to random values. We used our default noise settings of 1
deg point noise, 1 deg normal noise, 1 deg orientation noise,
0.1 log scale noise, and 0.5 deg gravity noise.

The results are shown in Fig. 1. With vanilla MSAC,
UP1SIFT is faster than all other solvers past an outlier ratio
of about 0.35, but P2ORI is slower than the other solvers
across all outlier ratios due to noise sensitivity. However,
note that the vanilla MSAC experiment is only meant to pro-
vide a theoretical analysis of solver performance; any mod-
ern practical application would use LO-MSAC or more so-
phisticated variants such as GC-RANSAC [1] for best per-
formance.

When using LO-MSAC to mitigate noise sensitivity,
UP1SIFT is faster than all other methods past an outlier ra-
tio of 0.2, and P2ORI is faster than P3P past an outlier ratio
of about 0.4. We did not test GC-RANSAC [1] because
the random synthetic data does not exhibit spatial coher-
ence and thus the graph cut method would not be beneficial
in these experiments.
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Figure 1. Average log timing (ms) for MSAC (top) and LO-MSAC (bottom) with various solvers and increasing outlier ratio. For all tests
we used our default noise settings: 1 deg point noise, 1 deg normal noise, 1 deg orientation noise, 0.1 log scale noise, and 0.5 deg gravity
noise.

3.2. Noise interaction

To explore interactions between noise types, we simultane-
ously varied pairs of noise types in synthetic data experi-
ments. The results are shown in Figs. 2 to 4. The conclu-
sions are largely the same as the single-noise experiments;
namely, that P2ORI is most sensitive to orientation noise,
and UP1SIFT is most sensitive to orientation noise in the
rotation estimate and scale noise in the position estimate.

Because of the scale of the color bars, the increase in
error with increasing point noise is sometimes not obvious
in the plots. However, the error does indeed increase with
point noise for all solvers, as can be more clearly seen in the
1D noise plots in Fig. 2 in the main paper.

It is clear that high noise in two factors will affect the pre-
cision of solvers working with these measurements. How-
ever, as shown in our real data experiments (Sec. 4.2 in

the main paper), our solvers outperform other point/affine
solvers in real noise settings.

3.3. Degenerate configurations

In the main paper (Secs. 3.4,3.5), we mentioned how the
Cayley rotation parameterization cannot represent 180 de-
gree rotations. Here we analyze other possible degenerate
configurations for the solvers.

When d, the depth of the point in the reference image, is
0, the affine matrix A (Eq. (1)) goes to 0. When the normal
vector is orthogonal to the vector from the reference camera
to the 3D point, m = 0 and thus A is undefined. However,
both of these configurations are impossible in real data.

We tested the P2ORI and UP1SIFT solvers with zero and
near-zero rotation and/or translation but did not find any sta-
bility issues, unlike the P1AC solver, which has some insta-
bility with near-zero rotation and/or translation, depending
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Figure 2. Median error of P2ORI and P3P solvers w.r.t. noise in the 2D point observations, normal vectors, and feature orientations.
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Figure 3. Median error of UP1SIFT and UP2P solvers w.r.t. noise in the 2D point observations, normal vectors, feature orientations, and
feature scales.

on the 3Q3 implementation used [9].

4. Affine feature extraction
Affine feature extraction takes 1-2 seconds per image with
AffNet [5] on a GPU. Other detectors, such as ASIFT [6],
are even slower. One of the most important advantages of
the proposed method compared to P1AC is that we do not
need expensive affine shapes. We only need orientation and

scale, which are obtained by default for many features. Es-
timating them, e.g., for learned detectors, is still more effi-
cient than estimating affine shapes. Since scale and orien-
tation provide an approximation to the full affine transfor-
mation, we decided to evaluate the P1AC solver on these
approximate data rather than not comparing it at all.
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Figure 4. Median error of P2ORI and UPSIFT solvers w.r.t. increasing noise in the normal vectors, feature scales, and feature orientations.

5. Inlier scoring and pose refinement
For inlier scoring and pose refinement, we only used the
point re-projection error and did not use the scale and ori-
entation measurements. The scale and orientation tend to
be noisy, and we have not found that using them for inlier
scoring would improve the results. We left the investigation
of their use for pose refinement as future work.
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