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Supplementary Material

S1. Additional results
Figure S1 contains additional synthetic results, similar to
Figures 1 and 4 of the main paper, and Figure S2 contains
additional real results from the Stanford-ORB dataset [18],
similar to Figure 8 from the main paper. As explained
in the paper, the recovered illumination estimated by our
model corresponds to the incident light at the object, which
is typically extremely warped relative to the collection of
environment maps provided by the dataset as ground truth,
since those are obtained using a light probe placed at dif-
ferent points in the scene. We therefore compute our qual-
ity metrics relative to the mean environment map obtained
from these differently-placed probes, blurred using a (nor-
malized) spherical Gaussian kernel p(θ, ϕ) ∝ exp(κ cos θ)
(we set κ = 100) to fuse the misaligned light sources. See
Figure S10 for an example of this process.

Figure S3 provides additional evidence that the signal
provided by unintended shadows improves the recovery of
environment illumination, expanding on Figure 9 in the
main paper.

Figure S4 contains an additional result for recovered illu-
mination and material properties when the object geometry
is not given, as in Figure 7 of our main paper.

Relighting. Figure S5 shows that our recovered albedo
enables convincing relighting results. See our supplemental
video for rendered video results.

Non-diffuse results. Figure S6 shows the results obtained
by our method when applied to the same microfacet BRDF
model from our main paper, but with a roughness value of
0.2 (see Section S2).

Recovered masks. The main goal of our approach is the
recovery of illumination and materials. However, it may
also be informative to visualize the recovered per-image oc-
cluder masks. Figure 5 in the main paper shows the re-
covered masks in the case of letter-shaped occluders, and
we show additional recovered masks from the same exper-
iment in Figure S7. Similarly, Figure S8 shows the re-
covered masks from another experiment done on the pota-
toes scene, where the masks are the spherical caps with
solid angle 0.1 · 4π steradians used in all other experiments
(see description in Section 5 of the main paper). Finally,
Figure S9 shows masks recovered from the Stanford-ORB
dataset [18], corresponding to the recovered illumination
shown in Figure 8 of the main paper. Note that although the
recovered lights and albedos in Figure 8 match the ground

truth ones, the masks appear to be less plausible. This can
be explained by the difficulty of recovering mask values in
regions occluding dark regions of the environment. This is
true almost everywhere in the case of highly-directional il-
lumination, like the environment map shown in Figure 8.
See Figure 5 in the main paper and the text in Section 5 for
a demonstration of this effect in synthetic data.

S2. BRDF model
The experiments in the paper and supplement were per-
formed using either a standard Lambertian BRDF (where
specified) or a BRDF based on Unreal Engine’s version of
GGX [15, 43]:

f(x, ω̂i, ω̂o) =

1

π
ρ(x)(1− F (n̂ · ω̂i;κ))(1− F (ω̂h · ω̂i, κ))(n̂ · ω̂i)+

+
D(n̂ · ω̂h;α)F (ω̂h · ω̂i;κ)G(n̂ · ω̂o, n̂ · ω̂i;α)

4(n̂ · ω̂i)+(n̂ · ω̂o)+
, (S1)

where:

F (cos θ;κ) = κ+ (1− κ)(1− cos θ)5 , (S2)

D(cos θ;α) =
α2

π(1 + (α2 − 1) cos2 θ)2
, (S3)

G(cos θi, cos θo;α) = g(cos θi;α)g(cos θo;α) , (S4)

g(cos θ;α) =
cos θ

k(α) + (1− k(α)) cos θ
, (S5)

k(α) =
(α+ 1)2

8
, (S6)

ω̂h =
ω̂i + ω̂o

∥ω̂i + ω̂o∥
. (S7)

We omit the positional dependence of the surface normal
vector n̂ in the point x on the surface.

The 5 parameters describing the BRDF at a given lo-
cation x are therefore the RGB albedo ρ, the microfacet
roughness α, and the specular reflectance at normal inci-
dence κ which determines the strength of the Fresnel factor
F .

S3. Full Description of Renderer
We describe our renderer’s approximation of the integral in
Equation 2 of the main paper. Our renderer follows well-
established practices that are readily documented in public
textbooks such as PBRT [32].

In order to render a specific pixel, we begin by choos-
ing a random ray from the camera center through the square



PSNR = 32.3 dB RMSE = 0.051

PSNR = 32.2 dB RMSE = 0.118
(a) Sample input image (b) Recovered albedo (c) True albedo (d) Recovered illumination (e) True illumination

Figure S1. Additional results on diffuse objects, similar to Figures 1 and 4 of the main paper. We report the RMSE of each environment
map in linear color space but plot the images after tonemapping for better evaluation of the full dynamic range. The albedo PSNR values
are reported on object pixels only.

PSNR = 18.9 dB PSNR = 13.5 dB
(a) Sample input image (b) Recovered albedo (c) Recovered albedo (no occluder) (d) True albedo

RMSE = 0.039 RMSE = 0.112
(e) Recovered illumination (f) Recovered illumination (no occluder) (g) Warped true illumination

Figure S2. Results on the captured salt007 scene from Stanford-ORB [18], extending Figure 8 of the main paper. Note that the “warped
true illumination” environment map (g) was captured by a light probe that was not co-located with the object, any may therefore be
significantly warped. The recovered RMSE reported is computed with respect to the average of all environment maps provided with the
dataset rotated the same coordinate frame, see text and Figure S10.

footprint of the pixel. The intersection point of the ray with
the object’s mesh is then computed, as well as the normal
vector at that point (interpolated from per-vertex normals).
Then, we use multiply importance sampling, and randomly
sample sℓ + sm = 1024 rays from this intersection point,
with sℓ = 512 sampled from the lighting distribution, and
sm = 512 sampled from the material distribution. The
lighting distribution is simply a piecewise-constant distri-

bution proportional to the average environment map values
taken across the three channels, weighted by the Jacobian
of the parameterization, sin θ:

p(ℓ)(ω̂) ∝
∑

c∈{R,G,B}

L̃c(ω̂) sin θ, (S8)

where L̃c is the c-th channel of the environment map ob-
tained using nearest-neighbor interpolation, and θ is the po-
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Figure S3. The signal provided by unintended shadows cast by unseen occluders improves the quality of recovered environment illumi-
nation. This is an expansion of Figure 8 in the main paper, but for an object with purely Lambertian material (we use the potatoes scene
for these experiments). Here, we plot the relative MSE for the recovered environment maps under two scenarios: (blue) using images
rendered with unobserved occluders and jointly estimating materials, illumination and occluder shape; and (orange) using images rendered
without occluders and only estimating materials and illumination (this is similar to the problem setting considered by Swedish et al. [37],
but optimized using our method). The cue of unintended shadows consistently improves the quality of estimated illumination across vary-
ing (first column) number of observed images, (second column) illumination frequency content, (third column) number of secondary rays
traced, (fewer secondary rays causes increased Monte Carlo noise), and (fourth column) additive Gaussian noise. We display recovered
environment maps corresponding to two points on each plot.

lar angle corresponding to ω̂, i.e. sin θ =
√

1− (ω̂ · ẑ)2,
with ẑ denoting the unit vector in the z direction.

The material distribution is simply the Trowbridge-Reitz
normal distribution function reparameterized for sampling
incoming light directions:

p(m)(ω̂) = D(n̂ · ω̂h;α)
|ω̂h · ẑ|

4(ω̂h · ω̂o)+
, (S9)

where ω̂h is the half-vector defined in Equation S7, andD is
the Trowbridge-Reitz distribution with roughness parameter
α, as defined in Equation S3.

The two sets of samples are combined using the power

heuristic [40]:

C(x, ω̂(j), ω̂o) =Lt

(
ω̂(j)

)
fx

(
ω̂(j), ω̂o

)(
n̂(x) · ω̂(j)

)
+

Ĩt(u) =
1

sm

sm∑
j=1

βm

(
ω̂(j)

)
C(x, ω̂(j), ω̂o)

p(m)
(
ω̂(j)

)
+

1

sℓ

sm+sℓ∑
j=sm+1

βℓ

(
ω̂(j)

)
C(x, ω̂(j), ω̂o)

p(ℓ)
(
ω̂(j)

) , (S10)

with ω̂(1), . . . , ω̂(sm) ∼ p(m)(ω̂) ,

and ω̂(sm+1), . . . , ω̂(sm+sℓ) ∼ p(ℓ)(ω̂) ,



(a) Sample input image (b) Recovered albedo (c) True albedo

(e) Recovered illumination (g) True illumination

Figure S4. Expansion of Figure 7 in the main paper. We are able to recover illumination even when geometry is unknown by first optimizing
a volumetric representation of geometry using a NeRF-based method. Despite this inaccurate proxy geometry, our method still recovers
plausible (albeit blurry) illumination (e) and albedo (b).

Original illumination, α = 0.8 Relit, α = 0.6 Relit, α = 0.4 Relit, α = 0.2

Figure S5. Our method enables modifying the illumination and material properties of the object. On the left, we show the original
illumination and rough material (α = 0.8 in our BRDF model). The three columns to the right feature our recovered albedo, but rendered
under different environment maps and progressively lower roughness values.

where βm and βℓ are the power heuristic weights for multi-
ple importance sampling, with exponent 2, as in [40]:

βm(ω̂) =

(
smp

(m)(ω̂)
)2(

smp(m)(ω̂)
)2

+
(
sℓp(ℓ)(ω̂)

)2 , (S11)

βℓ(ω̂) =

(
sℓp

(ℓ)(ω̂)
)2(

smp(m)(ω̂)
)2

+
(
sℓp(ℓ)(ω̂)

)2 . (S12)

Similar to the observation of Zeltner et al. [45], our exper-
iments show that it is beneficial to “detach” gradients from
the sampling procedure for ω̂(j) as well as from the PDFs
p(m) and p(ℓ) in Equations S8 and S9.

In order to generate samples from the lighting and mate-

rial distributions, we use inverse transform sampling, where
the n input pairs of samples (u0, v0), . . . , (un−1, vn−1) ∈
[0, 1]2 are computed from 2n i.i.d. uniform random vari-
ables r0, . . . , rn−1, t0, . . . tn−1 ∼ Uniform[0, 1] using:

ui =
mod(i, s) + ri

s
(S13)

vi = 2 · ⌊i/s⌋+ ti
s

, (S14)

where:
s = 2

⌊
log2(n)+1

2

⌋
. (S15)

This procedure divides the unit square into an s
2 × s grid,
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Figure S6. Our results on a shinier object. Our method is designed for diffuse objects, but it still manages to extract accurate material
properties and illumination when materials are more specular (α = 0.2 for this figure). For visualization purposes the roughness values α
are linearly mapped from [0.15, 0.25] to [0, 1], and the specular reflectance at normal incidence κ are mapped from [0.03, 0.05] to [0, 1]
(with the true value being 0.04), in order to show small errors.

Figure S7. Expansion of Figure 5 in the main paper, showing a random selection of recovered masks (top image in each pair), and the
corresponding ground truth (bottom image).

and uniformly samples a single pair (ui, vi) in each one of
the grid cells, resulting in a stratified sampling pattern.

For generating the data, we repeat the entire rendering
process described above 16 times using different primary
and secondary rays, for every pixel and average the results

in order to antialias the results. Note that this corresponds
to using a box reconstruction filter, which may have visible
artifacts, yet we decided to use it in our experiments for
simplicity.



Figure S8. Masks recovered by our method on the potatoes scene. The top image in each pair shows the recovered masks, and the bottom
one shows its corresponding true mask.

Figure S9. Masks recovered by our method on the salt004
scene from Stanford-ORB [18]. Note that the masks are not guar-
anteed to be plausible, since regions which occlude small amounts
of light cannot be recovered.

S4. Theoretical Considerations

S4.1. Figure 3 from Main Paper

Figure 3 from the main paper is based on a simplified “flat-
land” version of our problem, where the occluders and ma-
terials are known. A circular object with radius 1 and Lam-
bertian BRDF with albedo 1 is placed at the origin, and illu-
minated by a (monochromatic) environment map L(ϕ). An
occluder of some angular width ∆θ and central angle θ is

(a) Sample environment maps from the same captured scene

(b) Mean environment map (c) Blurred mean environment map

Figure S10. Our blurring process for environment maps provided
with the Stanford-ORB dataset [18]. The environment maps pro-
vided with the dataset are not aligned since they were captured by
a light probe not co-located with the object, as shown by the two
misaligned images in panel (a), which makes them unusable for
computing error metrics for illumination recovery. We therefore
first: (b) average all environment maps provided along with each
scene, and then (c) blur them using a normalized spherical Gaus-
sian.

then placed at some radius r from the origin, blocking all
shadow rays from the object to the illumination.

We parameterize the surface of the object using a single



angle parameter λ ∈ [0, 2π), i.e. the “surface” of the disk
is the set of points S = {(cosλ, sinλ) : λ ∈ [0, 2π)}. The
“image” at the point λ at time t is then:

It(λ) =

∫ 2π

0

L(ϕ)Mt(λ, ϕ; θt,∆θt)(cos(λ− ϕ))+ dϕ ,

(S16)
with the “flatland” (unnormalized) BRDF set to 1, and the
occluder value at time t is:

Mt(λ, ϕ; θt,∆θt) = 1

[
|ψ(λ, ϕ)− θt| <

∆θt
2

]
, (S17)

with:

ψ(λ, ϕ) = arctan

(
sinλ+ t(λ− ϕ) sinϕ

cosλ+ t(λ− ϕ) cosϕ

)
, (S18)

t(δ) =
√
cos2(δ) + r2 − 1− cos(δ).

We then discretize the integral in Equation S16 for every
t = 1, . . . , T , and stack the resulting equations:I1...

IT


︸ ︷︷ ︸

I

=

A1

...
AT


︸ ︷︷ ︸

A

ℓ, (S19)

where It ∈ RN is a vector of rendered values {It(λ)} at
time t, ℓ ∈ RM is a vector of illumination values {L(ϕ)},
and At ∈ RN×M contains the corresponding values of the
occluders M(λ, ϕ; θt,∆θt) at time t and the cosine lobe
(cos(λ− ϕ))+.

Figure 3 then shows the singular values of A (which are
the square roots of the eigenvalues of A⊤A), normalized to
have maximum value 1, for a few scenarios:
• “No occlusions”: The scenario described above with a

single observation (T = 1) but without an occluder, i.e.
where the mask is set to 1 everywhere (or, alternatively,
∆θ = 2π).

• “1 observation”: The scenario described above, with a
single occluder (T = 1) placed at θ = 0.

• “T observations”, for T ∈ {2, 8, 16, 32}: A contains
T stacked matrices corresponding to a discretization of
Equation S16, each one for a different occluder location
θt uniformly spread over [0, 2π), and the same ∆θ.
The exact values used for Figure 3 are occluder width

∆θ = 0.7 rads, placed at distance r = 10 from the origin,
with 512 samples per observation.

S4.2. Spherical Harmonics Intuition

In the main paper we show that expressing the occluder
masks in the basis of spherical harmonics, instead of the
standard basis, leads to significantly improved results. The
reasoning behind that can be illustrated in 1D using the

Fourier basis (sines and cosines), since spherical harmon-
ics are the spherical equivalent of the Fourier basis.

Similar to Equation S19, the integral in Equation S16 can
also be discretized and combined into a linear equation in
the occluder values. However, the resulting matrix is block-
diagonal, with each Mt only depending on It at the same
time t:

It = Bmt, (S20)

where It is again a vector of image values at time t, mt

is a vector of occluder values at the same time, and B de-
scribes their linear relation according to a discretization of
Equation S16. B is composed of a circulant matrix (corre-
sponding to the BRDF’s convolution), multiplied by a diag-
onal matrix with the illumination values L along its diago-
nal. This means that when the illumination is uniform, B is
also a circulant matrix, and is therefore diagonalized by the
Discrete Fourier Transform (DFT) matrix. This makes the
problem diagonal in the Fourier basis, which makes adap-
tive optimizers such as Adam [16] especially effective.

When the illumination is non-uniform, B is not gener-
ally diagonalized by the DFT matrix. However, for natural
lighting, when the DFT matrix F is applied to B, most of
the matrix’s energy is along the diagonal elements, i.e. the
elements of the ith row of FBF⊤ are maximized by the ith
element. See Figure S11 for examples showing rows of the
FBF⊤ matrix for different illumination spectra. The fact
that the Fourier basis (or in the original problem, the basis
of spherical harmonics) “nearly-diagonalizes” the problem
is the reason for its effectiveness.

Furthermore, since we are not interested in recovering
the occluders in regions with low illumination (see right of
Figure 5 of the main paper), it is informative to consider the
problem of estimating the masked illuminant:

It = C(ℓ ◦mt), (S21)

where ◦ denotes elementwise multiplication, and C is a cir-
culant matrix corresponding to the (discretized) convolution
in Equation S16. The problem of estimating ℓ ◦ mt given
It is in fact diagonalized by the Fourier basis, because C is
circulant.

S4.3. Image Pyramid Intuition

The set of linear equations satisfied by the illumination ℓ
described in Equation S19 cannot be separately solved for
each t, and therefore we must consider the entire system
of equations described by the matrix A ∈ RNT×M . Fig-
ure S12 shows the entries of A⊤A, for different choices of
T . The entries of the matrix exhibit a block structure in
the standard basis, i.e. without applying the DFT matrix to
it, with the sizes of the blocks becoming smaller for larger
values of T . In fact, for very large values of T the matrix
approaches a circulant matrix, which is diagonalized by the



Light spectrum Row 32 Row 64

a
=

10
a
=

1
a
=

0.
1

0 32 64 96127
0.0

0.5

1.0

0 32 64 96127
0.0

0.5

1.0

0 32 64 96127
0.0

0.5

1.0

0 32 64 96127
0.0

0.5

1.0

0 32 64 96127
0.0

0.5

1.0

0 32 64 96127
0.0

0.5

1.0

0 32 64 96127
0.0

0.5

1.0

0 32 64 96127
0.0

0.5

1.0

0 32 64 96127
0.0

0.5

1.0

Figure S11. Most of the energy of the matrix B is concen-
trated around the diagonal elements in the Fourier basis. Each
row shows, from left to right: the incident illumination spectrum
(which modifies B), and the magnitude of the elements of the 32nd
and 64th rows of FBT⊤, where F is the DFT matrix. Each row
corresponds to a 1/fa spectrum for a = 0.1, 1, 10. See text for
more details.

T = 1 T = 2 T = 4

T = 8 T = 16 T = 32

Figure S12. The structure of A⊤A for the light transport matrix
A, plotted for different values of the number of observations T .
Large values in red, small values in blue.

DFT matrix. However, we wish our method to not make use
of that fact and work even for a sparse set of observations,
and therefore a natural choice for parameterizing the illumi-
nation ℓ is by using an image pyramid, which matches the
block structure of A⊤A for general T values.

S5. Geometry Estimation Method

We estimate unknown object geometry from input images
by recovering a Neural Radiance Field (NeRF) [25] of the
object, based on the Instant Neural Graphics Primitives [26]
representation. To improve the recovered normal vectors
(computed as the negative normalized gradient of the vol-
ume density field), we use the normals orientation regu-
larization and MLP-predicted normals technique from Ref-
NeRF [41].

S6. Data Specification

All BRDF parameters (RGB albedo, roughness, and the
specular reflectance at normal incidence), are output by a
coordinate-based MLP taking in a positionally-encoded lo-
cation:

γ(x) =
(
sin(x), cos(x), sin(2x), cos(2x),

. . . , sin(64x), cos(64x)
)
. (S22)

The MLP has 4 layers with 128 hidden units each, with
ReLU nonlinearities. The weights are initialized around
zero, and the output BRDF parameters are obtained by map-
ping the MLP’s output through a sigmoid function, meaning
that they are all initialized around a value of 0.5.

The spherical harmonic coefficients {atℓm} from Equa-
tion 6 of the main paper are all set to zero, but a positive
bias of 100 is added to the pre-sigmoid value (which can
equivalently be done by initializing at00 to a constant). We
find that initializing the masks to be close to 1 everywhere
improves our method’s performance and prevents it from
getting stuck in a local minimum.

The environment map pyramid levels are also all initial-
ized to zero, such that the illuminant is set to all-ones, due
to the exponential nonlinearity (see Equation 7 in the main
paper).

S7. Additional Data Details

The geometry of the objects in the paper and their textures
originated in the following BlendSwap models:
1. Potatoes: created by mik1190, CC0 license (model

#15725)
2. Chair: created by 1DInc, CC0 license (model #8261).
3. Mannequin: created by salimrached, CC0 license

(model #27747).
4. Toad: created by arenyart, CC0 license (model #13078).
5. Plant: created by New Enemy, CC0 license (model

#30071).
6. Giraffe: created by amx360, CC-BY license (model

#29651).
The environment maps are from the following Poly

Haven assets:



1. “Canary Wharf”: created by Andreas Mischok, CC0 li-
cense.

2. “Abandoned Factory Canteen 01”: created by Sergej
Majboroda, CC0 license.

3. “Outdoor Umbrellas”: created by Sergej Majboroda,
CC0 license.

4. “Thatch Chapel”: created by Dimitrios Savva, Jarod
Guest, CC0 license.

5. “Evening Road 01 (Pure Sky)”: created by Jarod Guest,
Sergej Majboroda, CC0 license.

6. “Marry hall”: created by Sergej Majboroda, CC0 li-
cense.


