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1. eTraM Statistics

This section provides additional statistics about our
dataset for a more comprehensive understanding of eTraM.
eTraM consists of 10 hours of data collected from the
Prophesee EVK4 HD camera [1]. Beyond the annotated
static perception data, eTraM includes sequences of ego-
motion event-based data, offering increased dataset diver-
sity and experimentation opportunities.
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Figure 1. Average Duration Spent by Objects from Each Class:
The bar plot illustrates the average duration, in seconds, spent by
objects of different classes, providing insights into the temporal
characteristics of each class in the dataset.

Figure 1 presents the average duration spent by instances
from each class at the traffic sites. This temporal analy-
sis sheds light on the distinctive time dynamics of different
classes within the dataset. Participants from the pedestrian
and wheelchair classes spend the maximum time at the traf-
fic sites, correlating with their respective movement speeds.
In contrast, classes within the vehicle category tend to spend
relatively less time in comparison.

Further, we analyze the distribution of different cate-
gories (VH, PED, and MM) by the area they cover - small,
medium, and large, as shown in Figure 2.

*Equal contribution

Figure 2. Analysis of the distribution of objects categorized by
size (small, medium, and large)

Object
Size

RVT RED
PED VH MM All PED VH MM All

Small 0.308 0.705 0.276 0.516 0.324 0.556 0.274 0.385
Medium 0.859 0.722 0.100 0.722 0.661 0.763 0.159 0.561
Large - 0.637 - 0.637 - 0.701 - 0.701

Table 1. Evaluation of object size impact on the performance of
RVT and RED.

Based on the size classification, we also establish bench-
marks in Table 1. Upon analysis, it becomes evident that
both models exhibit similar trends in performance. Specifi-
cally, the performance on instances categorized as medium-
sized within the pedestrian and vehicle categories is consis-
tently superior to that on small and large-sized instances of
their category. Although the performance on vehicles tends
to be similar performance across all three size classifica-
tions, the performance in the pedestrian category observes a
significant drop when evaluated with small-sized instances.
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Figure 3. Aspect Ratio Distribution in eTraM: A histogram depicting the frequency distribution of aspect ratios across different classes in
eTraM, providing a comprehensive overview of the dataset’s characteristics.

Figure 4. Impact of Spatiotemporal Filtering on Event Camera Data: Comparison of a noisy pre-filtered image (left) and the enhanced
clarity achieved post-filtering (right) on daytime (top row) and nighttime data (bottom row).

In contrast, performance on small-sized instances is better
than medium-sized for micro-mobility. However, the re-
sults of micro-mobility in its best-performing size classifi-
cation are still worse than the worst-performance of pedes-
trian and vehicle categories. These results signify a perfor-
mance degradation when dealing with small-sized objects,
particularly micro-mobility. This limitation may stem from
the lack of contour and color information in raw event data.

Additionally, Figure 3 shows the frequency of aspect ra-
tios for each class in eTraM.

2. Denoising Using Spatiotemporal Filter

To address the noise present in the event stream, particu-
larly heightened during nighttime data with increased levels
of reflections and pointed light sources from streets and ve-
hicles, a denoising step is implemented for eTraM.

Figure 4 qualitatively illustrates the effectiveness of the
spatiotemporal filter [3] by presenting a side-by-side com-
parison of images before and after applying the filter, show-
casing the impact of noise reduction on event data frames.



Figure 5. Traffic Participant Object Detection by RVT: Snapshots illustrating the detection results of RVT at various traffic sites, showcasing
its performance in diverse real-world scenarios.

Figure 6. Traffic Participant Object Detection by RED. Snapshots illustrate the detection results of RED at various traffic sites, showcasing
its performance in diverse real-world scenarios.

3. Implementation Details

To assess how well event-based models perform on
eTraM, we trained the state-of-the-art architectures -
RVT [4], RED [9], and YOLOv8 [5] on 7 hr of data. We
evaluated them on 1.5 hr of validation and 1.5 hr of test
data to establish the baselines. Learning rates of 2 × 10−6,
2× 10−4, and 1× 10−2 are chosen, respectively.

3.1. Input Preprocessing

In this section, we define the input representations used,
namely the Histogram of Events [7, 8] and Time Sur-
faces [6]. The following representations were used to estab-
lish baselines and conduct the generalization experiments.

Histogram of Events involves assigning each event to
a specific cell based on its position (x, y) and a time bin
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Figure 7. Illustration of Intersection-over-Union based Multi-
Object Tracking on the detection results of RVT

determined by its timestamp (t). Subsequently, the total
count of events is tallied within each cell and time bin, with
separate counts for each polarity recorded in distinct out-
put channels. This process results in a total of two output
channels.

Let H represent a four-dimensional tensor with dimen-
sions n, c, h, w, where n represents the index of the times-
tamp, c represents the channel for the two polarities, h rep-
resents the height, and w represents the width of the input
event stream. Every new event ⟨x, y, p, t⟩ corresponds to a
specific histogram decided by the time bin that the times-
tamp corresponds to. Next, the histogram is updated by
adding 1 at the spatial coordinates of the new event. The
mathematical representation of the update is as shown in
Equation 1. This four-dimensional input representation was
used by the tensor-based approaches - RVT and RED.

H( t
∆ , p, y, x) = H( t

∆ , p, y, x) + 1 (1)

Time Surface, an alternative event processing method,
involves recording the timestamp of the most recently re-
ceived event for each pixel. This technique considers polar-
ities independently, resulting in the output of two channels.

We incorporate an exponential decay to the timestamps
to diminish the influence of older events. Assuming t0 = 0
for simplicity, this decay process is implemented. The input
representation is represented as a three-dimensional tensor
⟨p, w, h⟩, where p represents the polarity, h represents the
height, and w represents the width of the input event stream.

For each event ⟨x, y, p, t⟩ when t ≤ ti, its contribution
to the time surface at time ti can be mathematically rep-
resented as shown in Equation 2. The two polarities were
considered as the input channels for YOLOv8, and the ar-
chitecture was updated accordingly.

TSti(p, y, x) = exp(− ti−t
τ ) (2)

4. Detection and Tracking Examples
This section features illustrations of detections by the

tensor-based methods - RVT (Figure 5) and RED (Figure 6)
across the various traffic scenarios within eTraM.

The detection results are been used to perform tracking
using an IoU-based thresholding technique [2]. This re-
sults in a Multi-Object Tracking Accuracy (MOTA)/Multi-
Object Tracking Precision value (MOTP) of 0.18/0.28 on
eTraM’s test set. It is worth reiterating that the precise
evaluation of tracking performance is made possible solely
through the inclusion of object IDs within eTraM. An exam-
ple of ground truth objects and their corresponding tracking
is illustrated in Figure 7.
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