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A. Architecture
For our fusion adapters hX and hY , we use a simple in-
verted bottleneck MLP architecture. To illustrate the sim-
plicity of our design, we provide its pseudocode in Al-
gorithm 2. By default, we use an expansion factor of 4,
dropout of 0.6, and a shared latent space of dimension 512.
We specify the fusion adapter depths we used for each task
in Appendix B.

Algorithm 2: PyTorch-style pseudocode of our fusion adapters.
# D x, D y: latent dimension of unimodal encoders
# D s: latent dimension of shared space
# depth x, depth y: number of blocks for each adapter
# expansion factor: expansion factor hyperparameter
# dropout: dropout hyperparameter

from torch import nn

class Block(nn.Module):
def init (self, dim, expansion factor=4,
dropout=0.6):

super(). init ()
self.fn = nn.Sequential(

nn.Linear(dim, int(expansion factor *
dim)),

nn.GELU(),
nn.Dropout(dropout),
nn.Linear(int(expansion factor * dim),
dim),

)
self.ln = nn.LayerNorm(dim)

def forward(self, x):
return x + self.fn(self.ln(x))

h X = nn.Sequential(

*[Block(D x, expansion factor, dropout) for in
range(depth x)],

nn.LayerNorm(D x),
nn.Linear(D x, D s),

)

h Y = nn.Sequential(

*[Block(D y, expansion factor, dropout) for in
range(depth y)],

nn.LayerNorm(D y),
nn.Linear(D y, D s),

)

B. Implementation Details
For all experiments, we use the AdamW [8] optimizer dur-
ing training. We perform learning rate warmup by linearly
increasing the learning rate from 10−6 to lr (which we
specify for each task below) during the first epoch. We
then decay the learning rate using a cosine schedule [7].
We also set our FuseMix Beta distribution hyperparame-
ter as α = 1 so that the interpolation coefficient is sam-
pled as λ ∼ B(1, 1).1 We note that when mixup is per-

1B(α, α) is the uniform distribution when α = 1, concentrates around
0 and 1 when α < 1, and is unimodal when α > 1.

formed on ambient space, it is common to select small α
[3, 9, 10]. This ensures that inputs are only slightly per-
turbed so that they remain semantically meaningful. Con-
versely, in FuseMix, we are operating on the latent space
of pre-trained unimodal encoders where we find that rela-
tively larger α can improve performance in our experiments,
which suggests that larger perturbations on latent space can
remain semantically meaningful (see result in Appendix C).
We next describe specific details and hyperparameters for
each task we consider:

Image-Text Retrieval. We use a depth of 4 for both
fusion adapters (see ablation in Appendix C) which we train
for 500 epochs with a batch size of B = 20K. We set the
learning rate as lr= 10−3 and use weight decay of 0.1
during optimization.

Audio-Text Retrieval. We use a depth of 2 for both fu-
sion adapters, which we train for 50 epochs with a batch
size of B = 2K. We set the learning rate as lr= 10−4 and
use weight decay of 0.5 during optimization.

Audio-to-Image Generation. Since we align the latent
space of Whisper’s encoder into the latent space of CLIP, we
are treating CLIP’s latent space as our shared space. This
means that we only require one fusion adapter to map from
Whisper space into CLIP space – for which we use a depth
of 2. We note that this does not require any changes to our
framework since it is equivalent to setting one of our fu-
sion adapters as the identity network in Algorithm 1. For
this experiment, we use 50K audio-text pairs from the Au-
dioCaps [4] training set and a 50K subset of AudioSet [2].
Other hyperparameters are identical to those for audio-text
retrieval. During inference, we can therefore map audio in-
puts to CLIP space and treat them as though they were CLIP
text latents, which GLIDE can then use for conditioning.

C. Additional Ablations
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Figure 6. Text-to-image results evaluated on the Flickr30k test set.

We provide results for a few additional ablations. First,
we observe in Figure 6a that our method can generally ben-
efit from larger α (see Appendix B for a relevant discus-



sion). We also find in Figure 6b that as the fusion adapters
deepen, performance gradually increases until a depth of 4
where performance peaks. These results validate our setting
of these hyperparameters detailed in Appendix B.

D. Determinantal Point Processes
We begin with a brief summary of determinantal point pro-
cesses (DPPs) for completeness, and refer readers to [6] for
a thorough overview of DPPs in machine learning. Consider
the set I ≜ {1, 2, . . . , N}, which should be understood as
the set of indices of a dataset {zi}i∈I ⊂ Z with N distinct
elements. Consider also a symmetric positive semi-definite
N×N matrix L, such that Lij measures similarity between
zi and zj . A common choice for this matrix is to specify
a positive semi-definite kernel K : Z × Z → R and set
Lij = K(zi, zj).2 A DPP is a distribution over subsets of
I, where the probability of obtaining S ⊂ I is given by

pS (S) =
detLS∑

S′⊂I
detLS′

, (5)

where LS corresponds to the |S|×|S| submatrix of L whose
row and column indices are given by S. The idea behind
DPPs is that diverse subsets are more likely to be sampled,
where diversity is measured through dissimilarity (as spec-
ified in L) of the elements in {zi}i∈S . DPPs can be ex-
tended to k-DPPs [5], where an integer k is specified and
the constraint is added that S must have exactly k elements,
or more formally

pS (S | |S| = k) =
detLS∑

S′⊂I
|S′|=k

detLS′

1 (|S| = k) , (6)

where 1(·) denotes an indicator function. In the DPP lit-
erature, it can be of interest to find a mode of a DPP or k-
DPP (i.e. finding “maximally diverse” subsets, potentially
of specified size k) rather than to sample from these distri-
butions. In our case, we follow the greedy algorithm pro-
posed in [1], whose goal is to obtain a mode S∗ of a k-DPP:

S∗ ∈ argmax
S⊂I
|S|=k

detLS . (7)

To specify L, we first considered the kernel K(z, z′) = z ·z′
in an attempt to leverage the prior knowledge that cosine
similarity is sensible on the latent space Z of pre-trained
encoders.3 However, the resulting matrix L has low rank

2Recall that K is a positive semi-definite kernel if, for every N and
every finite subset {zi}i∈I of Z of size N , the corresponding N × N
matrix L is always positive semi-definite.

3In our experiments, we subsampled 75K (i.e. N = 75K) image-text
pairs from the COCO dataset to ensure L was able to fit in memory, and
took Z as the latent space of the BGE text encoder.

– at most the dimension of Z – and a requirement for the
argmax in Equation 7 to not be the empty set is that k ≤
rank(L). To be able to use larger k, we thus changed the
kernel to K(z, z′) = (z · z′ + 1)2, which is monotonically
increasing in z ·z′, but results in an L with much larger rank.
We emphasize that in our work we are using k-DPPs only
to evaluate the effect of dataset diversity for various values
of k (i.e. various subset sizes) rather than suggesting its use
to curate diverse datasets in practice, which would be too
costly.
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