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A. Summary and More Results

For a brief summary of our method and additional results,
we highly encourage the readers to check out the included
short video.

B. Vehicle 2D Keypoints Dataset

As mentioned in the main paper, although existing datasets
like PASCAL3D+ [11], KITTI-3D [3], Carfusion [6], and
ApolloCar3D [8] provide annotated 2D vehicle keypoints,
they mostly focus on driving scenes [3, 6, 8] or have lim-
ited training examples [11], lacking the necessary appear-
ance diversity. To increase the dataset diversity, we priori-
tized the number of different cameras and viewpoints rather
than the number of images per camera. A summary and
comparison of our proposed Vehicle 2D Keypoints dataset
with other publicly available datasets are detailed in Ta-
ble 1. On average, we extracted 120 images per camera
source for more than 60 different cameras spanning a wide
variety of viewpoints, appearances, sensor types, etc. For
each image, we run an off-the-shelf object detector to ex-
tract the car instances with high confidence score. This set
of car instances are manually annotated by the trained an-
notators from a commercial annotation service. We utilized
a web-based interface annotation tool from DeepLabCut [5]
where the annotators were asked to select 12 keypoint loca-
tions and its corresponding occlusion category (visible/self-
occluded/occluded-by-others) for every car. Note that we
also asked the annotators to filter out erroneous instances
such as bad quality images and/or wrong detections. As of
the time of paper submission, we have annotated a total of
42,547 car instances in 7,018 images.

C. Camera Intrinsics and Ground Plane

We follow Vuong et al. [9] to obtain the intrinsic param-
eters and ground plane equation for each of the stationary
traffic camera. Specifically, we used the panorama images
from Google Street View (GSV) [2] to build a metric 3D

Figure 1. Qualitative Results on OccludedPascal3D+ (left) and OOD-CV
(right) dataset.

scene reconstruction (at the desired camera location), then
the stationary camera is registered within the reconstruction
to determine its intrinsic and extrinsic parameters. We also
geo-register the scene to a metric scale using the GPS coor-
dinates, and the road plane equation is estimated by fitting
a plane to the set of 3D points whose 2D pixel projections
belong to the road category obtained from off-the-shelf se-
mantic segmentation method [1]. The camera poses and
plane equation are used in 3D reconstruction pipeline to re-
construct unoccluded objects as described in the main paper.
Thanks to the ground plane geometry constraint, we can re-
construct the accurate 3D geometry of cars and pedestrians,
generating realistic occlusion configurations. This method
enables us to obtain accurate calibration for more than 100
stationary cameras worldwide, thus allowing for a signifi-
cant expansion of our clip-art dataset.

D. Benchmarking on Additional Datasets

Evaluation on OccludedPascal3D+ dataset: Table 2
shows that our method performs better than NeMo [10] and
Ma et al. [4] on the OccludedPascal3D+ [10] dataset.

Evaluation on OOD-CV dataset: Quantitative results on
OOD-CV [12] dataset are shown in Table 3. Although our
method has never been trained on the anomalous scenarios
in this dataset, our approach shows higher performances on
many testing subsets. Please see qualitative results in Fig. 1.
Mining Unoccluded Objects: To identify unoccluded ob-
jects, we evaluate two methods: a simple heuristic based
on bounding box IOU threshold § (as used in WALT [7])
and training an Occlusion Classifier (OC) using human-
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Appearance diversity in terms of

Dataset Image source Cities | Times of Day | Weathers | Viewpoints #images | # car instances | Occ. keypoint annotations | Per-keypoint occ. type
PASCAL3D+ Natural Yes Yes Yes No 6,704 7,791 No No
KITTI-3D Self-driving No No No No 2,040 2,040 No No
Carfusion Handheld No No No No 53,000 100,000 Yes No
ApolloCar3D Self-driving No No No No 5,277 60,000 No No
Handheld
Ours Self-driving Yes Yes Yes Yes 7,018 42,547 Yes Yes
Traffic cameras
Table 1. Summary and comparison of our Vehicle 2D Keypoints dataset to other publicly available datasets.
Method | Acc (%) | Acc(f) |MedPoseErr| Med ADD ods, particularly in scenarios with heavy occlusion.
LT L2 L3|LI L2 L3 |LI L2 L3 |LI L2 L3
Occluded PASCAL3D+ Dataset (car) References
NII\IeMol ggg ‘31‘7‘; ;gi ;(7); 196-62 gi 82 (1)2 ?‘1‘ (I)Z ?g ?3 [1] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
aetal.|66. . . . . . 3 0. . 8 12 1. . S .
Ours [70.4 56.5 35.3|36.8 254 15302 0.4 0.8 |0.6 10 1.4 der Kirillov, and Rohit Girdhar. Masked-attention mask

Table 2. Baseline comparisons across object pose metrics on Occluded-
PASDAL3D+ [10] for vehicle category.

Acc — Z i.i.d shape pose texture context weather

6
NeMo 66.7 51.7 569 526 513 49.8

Ours 754 48.6 50.8 56.7 49.1 55.6

Table 3. Comparisons on the OOD-CV [12] dataset (car).

Metric 6=001]0=01|d6d=0.2]06=0.5| OC (ours)
Recall 0.60 0.42 0.17 0.01 0.81
Precision 0.32 0.41 0.52 0.57 0.70

Table 4. Accuracy of our OC module compared with baseline us-
ing bbox IOU threshold § in detecting unoccluded objects.

annotated data (using images from our new vehicle key-
points dataset). Table 4 demonstrates that our OC module
is more effective than the heuristic, particularly in inter-
category occlusion scenarios (e.g., vehicles occluded by
people or background objects). This allows us to efficiently
filter out unwanted occluded objects in the training data, im-
proving data purity. While not essential for our method, we
believe this human-annotated dataset is important for future
research on understanding and handling occlusion.

E. Additional 2D/3D Clip-Art Data Examples

More examples from our 2D/3D Clip-Art pseudo-
groundtruth supervision data, including the clip-art image
with corresponding amodal segmentation, keypoints, and
3D object reconstruction, are shown in Fig. 2.

F. Additional Qualitative Results

Additional results are shown in Fig. 3, with various oc-
clusion configurations, including self-occlusion, truncation,
and occlusion-by-others. Notably, training with our clip-art
data yields a substantial improvement over baseline meth-
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Figure 2. Automatically generated 2D and 3D Clip-Art to supervise our network: Unoccluded objects are first mined using time-lapse
imagery of the WALT dataset [7]. Random non-intersecting unoccluded objects are composited back into the background image in their
respective original positions to preserve correct appearances. The resulting Clip-Art images and their respective amodal segmentation
masks, keypoint locations, and 3D meshes are shown. Our method generates realistic appearances from any camera, incorporating diverse
viewing geometries, weather conditions, lighting, and occlusion configurations.



A

Input Image Amodal Segmentation Amodal Keypoints/Shapes 3D View-1 3D View-2

Figure 3. We show additional qualitative results on multiple sequences of the WALT [7] dataset. Our method produces accurate amodal
segmentation, keypoints, as well as 3D poses and shapes across diverse poses and occlusion configurations.
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