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Structure of this paper. In this supplementary mate-
rial, we present some details omitted from the main paper:
the novelty of our method in Section S1, the limitations of
our method associated with indoor scenes in Section S2,
extended related work of panoramic images in Section S3,
details of our method of rotation estimation and auxiliary
diagonal points (ADPs) in Section S4, and additional ex-
perimental results of the vanishing point (VP) estimator and
the whole of our method in Section S5.

S1. Novelty
To describe the novelty of the paper, we again outline our
major contributions:
1. We propose a heatmap-based VP estimator for recover-

ing the rotation from a single image to achieve higher
accuracy and robustness than geometry-based methods
using arc detectors.

2. We introduce ADPs with an optimal 3D arrangement
based on the spatial uniformity of regular octahedron
groups to address the lack of VPs in an image.

We explain the novelty of the paper, along with our con-
tributions, in the remainder of this section.

Heatmap-based vanishing point estimator. As the first
contribution, our heatmap-based VP estimator achieved the
detection of VPs and ADPs (VP/ADPs) in general scene
images. By contrast, conventional geometry-based meth-
ods [1, 6, 12, 22] use arc detectors for estimating VPs. How-
ever, detection using arc detectors tends to fail in general
scene images, such as images of trees lining a street. Fur-
thermore, our VP estimator can robustly provide extrinsic
camera parameters as VP/ADPs, in contrast to conventional
learning-based methods [7, 17, 18] that use regressors with-
out heatmaps. Our robust image-based method will con-
tribute to subsequent studies; that is, robust camera rotation
estimated by our method is useful for improving the per-
formance of geometry-related tasks, such as simultaneous
localization and mapping [5, 25].
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Figure S1. Qualitative results for indoor images from an off-the-
shelf fisheye camera (ID 1). Far left image: input image. Right
two images: the results of our method (HRNet-W32) trained using
SL-MH (front and side directions).

Auxiliary diagonal points. As the second contribution,
our proposed ADPs provide geometric cues that geometry-
based methods cannot use; however, our heatmap-based
VP estimator extracts these cues in general scene images.
This approach of extracting geometric cues suggests that
deep neural networks have the potential to obtain geometric
cues that geometry-based methods cannot address. Simi-
larly to our method, we believe that learning-based methods
can use ADPs to improve their performance in geometry-
related tasks, such as calibration, stereo matching, and si-
multaneous localization and mapping. In calibration, ADPs
provide strong cues to compensate for the lack of VPs in
images. Therefore, our method substantially outperformed
both geometry-based [6, 12] and learning-based [7, 17, 18]
state-of-the-art methods.

As described above, our major contributions have suffi-
cient novelty to distinguish them from previous studies us-
ing both geometry-based and learning-based methods. Fur-
thermore, we believe that our networks and ADPs will con-
tribute to subsequent studies in many areas of computer vi-
sion, and are not limited to calibration.

S2. Limitations

Figure S1 shows the qualitative results of indoor scenes ob-
tained by our method. We captured the input image using an
off-the-shelf fisheye camera (ID 1 [18]) at an intersection in
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an underpass. The indoor image degraded the performance
of our method because of the domain gap between indoor
and outdoor environments. In this paper, we focused on out-
door scenes following the studies of conventional learning-
based methods [7, 17, 18]. We believe that subsequent stud-
ies will be able to extend this work to address the variety of
indoor scenes.

S3. Extended related work
Due to the space limitations of the main paper, we re-
view extended related work of panoramic images, such as
equirectangular projection. These panoramic images are
captured using panoramic cameras that are not fisheye cam-
eras. However, both panoramic cameras and fisheye cam-
eras have the same characteristics associated with large
fields of view and distorted images. A typical task using
panoramic images is panoramic depth estimation. In ad-
dition to depth estimation, panoramic depth completion is
also described below.

Panoramic depth estimation. The task of the pano-
ramic depth estimation is the estimation of dense depth
maps from an RGB panoramic image. For an equirect-
angular projection, learning-based approaches can estimate
dense depth maps from an image. An end-to-end depth es-
timation network was proposed by Wang et al. [19]. This
neural network consists of two-branch neural networks pro-
cessing the equirectangular projection and the cub-map pro-
jection with fusion blocks to leverage both projections.
Eder et al. [3] proposed a tangent image spherical represen-
tation to alleviate the distortion of panoramic images. To
improve accuracy and inference speed, Sun et al. [15] pro-
posed a horizon-to-dense module relaxing the per-column
output shape constraint. In addition to these convolutional
neural networks, Shen et al. [13] proposed a Transformer-
based method to improve accuracy. These panoramic depth
estimation methods can only handle panoramic images in
an equirectangular projection.

Panoramic depth completion. In contrast to panoramic
depth estimation, panoramic depth completion is the esti-
mation of dense depth maps from panoramic depth with
missing areas. Yan et al. [23] proposed a pioneering method
for the task of panoramic depth completion from a single
360◦ RGB-D pair. The multi-modal masked pre-training
of this method generates shared random masks to make
incomplete RGB-D pairs. This pre-training strategy al-
lows networks to complete panoramic depth accurately. In
addition, Yan et al. [24] also proposed a distortion-aware
loss for the distortion of equirectangular projection and an
uncertainty-aware loss for the inaccuracy in non-smooth re-
gions. The proposed method using these loss functions
achieved high accuracy for panoramic depth completion.
These panoramic depth completion methods require RGB-
D panoramic images.
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Figure S2. Projected 3D VP/ADPs and orthogonal points of
VP/ADPs in the Manhattan world to estimate camera rotation.
These orthogonal points are obtained as VP/ADPs without camera
rotation; that is, pan, tilt, and roll angles are 0◦. Four VP/ADPs of
the labels in the front, right, top, and back-right-bottom (BRB) are
shown in a unit sphere as an example of VP/ADPs.

As described above, these methods require panoramic
input images captured using specific devices, that is,
panoramic cameras. Additionally, panoramic images in the
equirectangular projection are captured by upright or cali-
brated cameras. To satisfy these settings, we need to control
the environments. Therefore, the networks for panoramic
images cannot address deep single image camera calibra-
tion using fisheye images, which are rotated and distorted
to varying degrees.

S4. Details of our method
In this section, we explain the details of our method of rota-
tion estimation and describe the ADPs related to VPs.

S4.1. Rotation estimation

The details of rotation estimation are described in Section
3.3 (main paper). As described there, the estimation is per-
formed by fitting two sets of world coordinates, which is
known as the absolute orientation problem [21]. One set
of world coordinates U consists of the 3D VP/ADPs, p,
projected by backprojection [18] using the camera param-
eters on condition that the rotation matrix R is a unit ma-
trix and the translation vector t is a zero-vector. The other
set Û consists of the 3D points, p̂, that correspond to these
VP/ADPs along the orthogonal Manhattan world coordi-
nates, as shown in Figure S2. The absolute orientation prob-
lem is to fit the two sets, U and Û , by rotation, translation,
and scaling. We focus only on rotation because VP/ADPs



are in a unit sphere.
It should be noted that this problem cannot be solved in

the case of two or fewer VP/ADPs. To handle this condi-
tion, we add additional points using the cross-product oper-
ation. 1) In the case of two VP/ADPs, an additional point is
calculated by the cross-product of the two position vectors
of the VP/ADPs. 2) In the case of one VP/ADP, a temporal
point on the unit sphere is added, whose direction is orthog-
onal to that of the VP/ADP. An additional point is calculated
by the cross-product of the two position vectors of the tem-
poral point and the VP/ADP. One of the angles (among the
pan, tilt, and roll angles) of the temporal point is replaced
by 0◦. 3) In the case of no VP/ADPs, 0◦ is used for the pan,
tilt, and roll angles.

Conventional methods to solve the absolute orientation
problem are based on singular value decomposition. To re-
duce the computational costs, the optimal linear attitude es-
timator [8, 10] was proposed, which uses skew-symmetric
matrices instead of singular value decomposition. We de-
scribe the procedure for obtaining the pan, tilt, and roll an-
gles because conventional calibration methods report results
with these angles rather than the Rodrigues vector. First,
we estimate the camera rotation as the Rodrigues vector,
g = (gx, gy, gz)

T, using this optimal linear attitude esti-
mator. Second, we convert the Rodrigues vector g to an
optimal quaternion, q̂ = (q̂x, q̂y, q̂z, q̂w), using the equation

q̂ =
q√
qTq

, (S1)

where q = (gx, gy, gz, 1) [10]. Third, we obtain a rotation
matrix R from the quaternion q̂ using the equation

R =

 aw + ax − 1 axy − azw axz + ayw
axy + azw aw + ay − 1 ayz − awx

axz − ayw ayz + awx aw + az − 1

 ,
(S2)

where

(ax, ay, az, aw) = (2q̂2x, 2q̂
2
y, 2q̂

2
z , 2q̂

2
w),

(axy, ayz, azw, awx) = (2q̂xq̂y, 2q̂y q̂z, 2q̂z q̂w, 2q̂w q̂x),
(axz, ayw) = (2q̂xq̂z, 2q̂y q̂w).

Finally, we calculate the pan, tilt, and roll angles by decom-
posing the rotation matrix. However, this decomposition is
not unique without constraints. To solve this problem, we
determined the pan, tilt, and roll angles for which the mean
absolute angle errors between the estimated and ground-
truth (GT) angles are the smallest, for both our method
and conventional methods. It should be noted that, in our
method, the estimated Rodrigues vector is directly used for
applications, and the decomposition described above was
employed to evaluate angle errors.

S4.2. Symmetry of auxiliary diagonal points

We describe the optimal arrangement of ADPs in detail.
Our calibration method requires at least two unique axes
to estimate camera rotation without ambiguity. It is pos-
sible to add VP-related points, such as ADPs; however,
increasing the number of points causes unstable optimiza-
tion. To address this trade-off, we analyze the arrangement
of VP/ADPs with respect to 3D spatial uniformity and the
number of points.

In world coordinates at a unit sphere, VPs form a regular
octahedron, shown in Figure S3(a). This regular octahedron
has the symmetry of the regular octahedron groups, whose
rotational symmetry has six axes in C2, four axes in C3,
and three axes in C4. It should be noted that Cn represents
the rotational symmetry using Schoenflies notation; that is,
Cn is (360◦/n)-rotational symmetry in Figure S3(b). We
need to define VP-related points along C2, C3, or C4 to
maintain the symmetry of the regular octahedron groups;
that is, these points are on the axes or form axial symmetry.
Because of the trade-off described above, we focus on ar-
rangements with a small number of points. Figure S3 shows
arrangements of our proposed ADPs and candidate points,
as explained below.

First, we explain the arrangement of ADPs illustrated
in Figure S3(c). Along the C3 axes, ADPs are located at
the eight corners of a cube. The minimum angle formed by
two axes, α, is 54.7◦. This angle expresses the magnitude
of the 3D spatial uniformity; that is, biased arrangements
decrease α. Second, C3-based auxiliary points, of which
there are 24, are defined along the C3 axes (C3-axial sym-
metry), as shown in Figure S3(d). The number of points
(24) is the second smallest number of points for the C3

axes because the C3 axes have 120◦-rotational symmetry,
yielding 24 points (8 axes ×360◦/120◦-rotational symme-
try). Third, C4-based auxiliary points, of which there are
12, are defined along the C4 axes (C4-axial symmetry), as
shown in Figure S3(e). Each point is located on the bisector
of an angle between two orthogonal axes: two axes among
XM , YM , and ZM . We use these axial-symmetric points
because VPs are located along the C4 axes. Fourth, C2-
based auxiliary points, of which there are 12, are defined
along the C2 axes, as shown in Figure S3(f). Each point is
located in the middle of the edge of a cube. It should be
noted that we can assume other arrangements satisfying the
symmetry of the regular octahedron groups, in addition to
those above. These other arrangements have more auxil-
iary points than those in (c), (d), (e), and (f) have for each
symmetric axis. Therefore, we focus on the arrangements
illustrated in Figure S3 because many auxiliary points cause
unstable optimization in training.

Of all the cases discussed above, the minimum number
of points is eight, as shown in Figure S3(c). The number
of ADPs (8) is smaller than that of C2-based and C4-based
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Figure S3. Arrangements of VPs and ADPs. (a) A regular octahedron formed by VPs. (b) Symmetry axes of C2, C3, and C4 in the
symmetry of the regular octahedron groups. (c) An arrangement of ADPs. (d) An arrangement of C3-based auxiliary points with 24 points.
(e) An arrangement of C4-based auxiliary points with 12 points. (f) An arrangement of C2-based auxiliary points with 12 points.

Table S1. Comparison of the numbers of auxiliary points and minimum axis angles

Arrangement Number of auxiliary points Minimum axis angle α ↑
C3-based auxiliary points in Figure S3(c) (ADPs) 8 54.7◦

C3-based auxiliary points in Figure S3(d) 24 38.8◦

C4-based auxiliary points in Figure S3(e) 12 45.0◦

C2-based auxiliary points in Figure S3(f) 12 45.0◦

auxiliary points (12). In addition, ADPs have 3D spatial
uniformity with respect to the minimum axis angle α, as
shown in Table S1. Therefore, we use ADPs, which have
the optimal arrangement in the case of eight points, for our
calibration method.

As described in Section 4.2 (main paper), our method
was able to estimate a unique rotation for over 98% of the
images in our experiments because of the arrangement of

optimal 3D spatial uniformity, as presented in Table S2. By
contrast, the use of VPs without ADPs enabled the estima-
tion of a unique rotation for less than 52% of the images.
It should be noted that the number of unique axes was the
same in the SL-MH, SL-PB, SP360, and HoliCity datasets
because we used the same random distribution for generat-
ing fisheye images. Table S3 shows the number of VP/ADP
labels in each dataset. The diagonal directions of ADPs led



Table S2. Comparison of the distribution of the number of unique
axes after the removal of label ambiguity in Section 4.2 (main pa-
per) (%)

Dataset1 Number of unique axes

0 1 2 3 4 5 6 7

Only VPs (5 points)
Train 0.9 48.4 31.5 19.2 – – – –
Test 0.8 47.8 31.5 19.9 – – – –

VPs and ADPs (13 points)
Train 0.0 1.3 13.5 25.7 24.8 18.8 10.9 5.1
Test 0.0 1.4 12.8 25.7 25.6 19.6 10.2 4.6

1 SL-MH, SL-PB, SP360, and HoliCity all have the same
distribution of the number of unique axes, as shown in this table

Table S3. Distribution of the number of labels after the removal
of label ambiguity in Section 4.2 (main paper) (%)

Label name1 Train2 Test2

VPs
front 57.2 46.9
back 0.1 0.3
left 37.6 42.3

right 21.3 19.2
top 26.6 31.0

bottom 26.5 31.3

ADPs
FLT 50.6 47.8
FRT 41.9 35.5
FLB 50.5 47.9
FRB 41.7 35.2
BLT 16.0 21.6
BRT 7.2 9.2
BLB 15.9 22.0
BRB 7.2 9.1

1 The labels of the VPs and ADPs correspond to the labels
described in Table 2 (main paper)

2 SL-MH, SL-PB, SP360, and HoliCity all have the same
distribution of the number of unique axes, as shown in this table

to increasing the number of ADPs in images. In particu-
lar, ADPs were arranged at the front side (FLT, FRT, FLB,
and FRB) in over 35% of the images. Therefore, ADPs can
compensate for the lack of VPs in images.

S5. Experimental results
To demonstrate the validity and effectiveness of our method,
we present further quantitative and qualitative results of our
experiments in this section. The dataset names (SL-MH,
SL-PB, SP360, and HoliCity) correspond to the names used
in Section 4.1 (main paper).

S5.1. Results of training the distortion estimator

We report the performance of our distortion estimator to de-
scribe the difference between Wakai et al.’s method [18]
and the distortion estimator. Our distortion estimator is
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(a) Wakai et al.’s calibration network
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(b) Our distortion network

Figure S4. Network architectures of (a) Wakai et al.’s calibra-
tion network [18] and (b) our distortion network. Wakai et al.’s
calibration network estimates extrinsics (tilt θ and roll ψ angles)
and intrinsics (focal length f and a distortion coefficient k1). By
contrast, our distortion estimator has two regressors for the focal
length f and distortion coefficient k1. The input fisheye image is
generated from [9].

composed of Wakai et al.’s calibration network [18] with-
out the tilt and roll angle regressors, as shown in Figure S4.
We optimized the distortion estimator after pretraining on
Wakai et al.’s calibration network [18]. The distortion esti-
mator achieved slight improvements in the focal length f
and distortion coefficient k1 because the number of esti-
mated camera parameters was reduced by two, that is, the
tilt and roll angles, as shown in Table S4.

S5.2. Comparison using ResNet backbones

To clarify the performance of the HRNet [16] backbones,
we also evaluated our method using the ResNet [14] back-
bones, which are one of the baseline backbones used for
various tasks. Table S5 shows the results of our method us-
ing either the ResNet or HRNet backbones. With respect
to rotation errors and reprojection errors (REPE) [18], our
method using the HRNet backbones outperformed that us-
ing the ResNet backbones, irrespective of backbone size.
This benefit of the HRNet backbones corresponds to its ad-
vantages for human pose estimation [16]. Our method using
HRNet-W48 achieved slight improvements over HRNet-
W32 with respect to REPE and pan, tilt, and roll angles. The
small magnitude of these improvements suggests that the
performance is saturated for the larger HRNet-W48 back-
bone; this saturation may possibly be caused by the limita-
tion of the variations of the panoramic-image datasets.



Table S4. Comparison of calibration accuracy by Wakai et al.’s method [18] and our distortion estimator on the test sets of each dataset

Wakai et al. [18] ECCV’22 Our distortion estimator

Dataset Mean absolute error ↓ RSNR1 ↑ SSIM1 ↑ Mean absolute error ↓ RSNR ↑ SSIM ↑
Tilt θ [deg] Roll ψ [deg] f [mm] k1 Tilt θ [deg] Roll ψ [deg] f [mm] k1

SL-MH 4.13 5.21 0.34 0.021 29.01 0.838 – – 0.34 0.020 29.09 0.840
SL-PB 4.06 5.71 0.36 0.024 29.05 0.826 – – 0.36 0.022 29.31 0.833
SP360 3.75 5.19 0.39 0.023 28.10 0.835 – – 0.37 0.023 28.23 0.836

HoliCity 6.55 16.05 0.48 0.028 25.59 0.751 – – 0.48 0.028 25.68 0.755
1 PSNR is the peak signal-to-noise ratio and SSIM is the structural similarity [20]

Table S5. Comparison of ResNet and HRNet in our method on the SL-MH test set

Backbone1 Mean absolute error2 ↓ REPE2 ↓ Mean fps3 ↑ #Params GFLOPs4
Pan ϕ Tilt θ Roll ψ

ResNet-50 4.89 4.97 4.79 8.39 19.9 58.7M 16.4
ResNet-101 3.65 4.07 3.87 7.02 17.7 76.8M 19.8
ResNet-152 3.46 3.80 3.72 6.68 16.0 91.8M 23.3

HRNet-W32 2.20 3.15 3.00 5.50 12.3 53.5M 14.5
HRNet-W48 2.19 3.10 2.88 5.34 12.2 86.9M 22.1
1 Our VP estimator backbones are indicated
2 Units: pan ϕ, tilt θ, and roll ψ [deg]; REPE [pixel]
3 Implementations: our method using PyTorch [11]
4 Rotation estimation in Figure 4 (main paper) is not included

GT VP

GT ADP

Figure S5. Eigen-CAM [2] results of our VP estimator (ResNet-
50 [14]) on the SL-MH test set. Ground-truth (GT) VPs and ADPs
are shown using red and white circles, respectively.

S5.3. Visualization of our VP estimator

To analyze the network activation of our VP estimator, we
visualized the activation of the middle layers using Eigen-
CAM [2]. For the visualization, ResNet-50 [14] backbones
were used for simplicity because HRNet [16] backbones
have branched structures. The ResNet-50 backbones with-
out the head layer consist of 49 convolutional layers. These
layers can be divided by sequential five blocks from input to
output: conv1, conv2_x, conv3_x, conv4_x, and conv5_x.
It should be noted that the features of conv5_x are used
for the head of the deconvolutional layer block. Therefore,
we selected conv2_x at the middle of the layers to analyze
the network responses because the features of conv5_x are
heatmaps with activated VP/ADPs.

Figure S5 shows the visualization of conv2_x of ResNet-
50 backbones in our VP estimator using Eigen-CAM on the
SL-MH test set. This result suggests that the VP estima-
tor tends to extract image features from continuous textured
regions, such as buildings, vehicles, and roads. The defor-
mation of these continuous regions can have implicit 3D
information used for the final deconvolution layer block to
detect VP/ADPs.

S5.4. Comparison using HRNet loss function

To validate the effectiveness of our loss function, we trained
the VP estimator with HRNet-W32 using the HRNet loss
function [16]. As described in Section 3.2 (main paper),
the HRNet loss function evaluates only images that include
detected keypoints; that is, detection failure does not affect
the loss value based on pixel values. To solve this prob-
lem, we modified this loss function to evaluate all images,
including those with detection failure. Table S6 shows the
results of our VP estimator trained using either the HRNet
loss function or our loss function. In keypoint metrics, the
VP estimator trained using our loss function improved the
average precision (AP), average recall (AR)50, and AR75 by
0.01 points, compared with the VP estimator trained using
the HRNet loss function. The mean distance errors of all
VP/ADPs in the VP estimator trained using our loss func-
tion are smaller than those in the VP estimator trained using
the HRNet loss function by 0.08 pixels. In addition, the re-
sults in Table S7 show that our method trained using our loss
function improved angle estimation by 0.17◦ on average,
compared with our method using the HRNet loss function,



Table S6. Comparison of loss functions in our VP estimator using HRNet-W32 on the SL-MH test set

Loss function Keypoint metric ↑ Mean distance error [pixel] ↓
AP AP50 AP75 AR AR50 AR75 PCK front left right top bottom VP1 ADP1 All1

HRNet loss function [16] 0.98 0.99 0.99 0.97 0.97 0.97 0.99 2.58 2.86 2.55 1.90 1.69 2.35 3.80 3.18
Our loss function 0.99 0.99 0.99 0.97 0.98 0.98 0.99 2.67 2.90 2.52 1.90 1.72 2.39 3.64 3.10

1 VP denotes all 5 VPs; ADP denotes all 8 ADPs; All denotes all points consisting of 5 VPs and 8 ADPs

Table S7. Comparison of loss functions in our method using HRNet-W32 on the SL-MH test set

Loss function Mean absolute error1 ↓ REPE1 ↓
Pan ϕ Tilt θ Roll ψ

HRNet loss function [16] 2.54 3.25 3.07 5.60
Our loss function 2.20 3.15 3.00 5.50

1 Units: pan ϕ, tilt θ, and roll ψ [deg]; REPE [pixel]

for pan, tilt, and roll angles. Therefore, our loss function
can improve the calibration accuracy of our method.

S5.5. Error factor of our method

We analyzed the results of our method using HRNet-W32
to describe the error factor; that is, the calibration errors
were caused by the distortion estimator and VP estimator.
To evaluate this error factor, we performed calibration with
ground-truth values for distortion parameters and image co-
ordinates of VP/ADPs from the distortion estimator and
the VP estimator, respectively, as shown in Table S8. Our
method using ground-truth image coordinates of VP/ADPs
outperformed our method using ground-truth distortion pa-
rameters, with respect to angle error and REPE. Therefore,
the errors of the VP estimator were dominant over those of
the distortion errors. In particular, angle errors were primar-
ily caused by the VP estimator because camera rotation is
mainly estimated from VP/ADPs. These results also show
that the distortion estimator and VP estimator have room
for improvement by −0.11◦ and −1.58◦, respectively, on
average for pan, tilt, and roll angles.

S5.6. Details of quantitative results

To analyze the accuracy and robustness of our method, we
evaluated our method and conventional methods on the test
sets of SL-MH, SL-PB, SP360, and HoliCity. Table S9
shows the mean absolute errors and REPE. It should be
noted that we cannot calculate the REPE of the Pritts et
al.’s [12] and Lochman et al.’s [6] methods, for the fol-
lowing reasons: Pritts et al.’s method does not estimate
focal length, which we need for calculating REPE; it is
hard for Lochman et al.’s method using the division cam-
era model [4] to address projected sampling points with
over 180◦ fields of view because camera parameter errors
lead to projected points with over 180◦ fields of view. Ta-
ble S10 also reports the results of the cross-domain eval-
uation. These results demonstrated that our method using

HRNet-W32 outperformed methods proposed by López-
Antequera et al. [7], Wakai and Yamashita [17], Wakai et
al. [18], Pritts et al. [12], and Lochman et al. [6] in terms of
the mean absolute errors and REPE.

S5.7. Error distribution of our method

To evaluate the error distribution of angles, we compared
the estimated and ground-truth camera parameters. Fig-
ure S6 shows the error distribution for our method using
HRNet-W32. Although a few estimated angles have angle
errors, most estimated angles are plotted close to the diago-
nal lines in Figure S6. (Angles are plotted on the diagonal
lines when the estimated angles correspond to the ground-
truth angles.) This distribution indicates that our method
can stably estimate angles throughout the angle range from
−90◦ to 90◦; that is, it demonstrates angle robustness.

In addition, we analyzed the error distribution of cam-
era parameters: angles, focal length, and distortion coeffi-
cients. We divided the angle range into 10 equal intervals:
[−90◦,−72◦], [−72◦,−54◦], . . . , [72◦, 90◦]. Similarly,
we divided the ranges of focal length and distortion coeffi-
cients into 10 equal intervals. The results for these subdi-
visions are shown using box and violin1 plots in Figure S7.
Each violin plot with a single peak indicates that our net-
works were sufficiently optimized because insufficient op-
timization leads to multiple peaks in violin plots. Overall,
our method achieved precise calibration across the whole
range of estimated angles.

S5.8. Qualitative evaluation

To validate the VP/ADP estimation and quality of the recov-
ered images, we present additional calibration results using
synthetic images and off-the-shelf fisheye cameras.

1The violin plot represents the probability density of the distribution as
the width of the violin plot, and supports multiple peaks. Two peaks of the
probability density form the shape of a violin.



Table S8. Comparison using estimation and ground truth in our method using HRNet-W32 on the SL-MH test set

Distortion parameter f and k1 Image coordinates of VP/ADPs Mean absolute error1 ↓ REPE1 (Gain) ↓
(Distortion estimator) (VP estimator) Pan ϕ (Gain2) Tilt θ (Gain) Roll ψ (Gain)

Estimation GT 0.94 (−1.26) 1.40 (−1.75) 1.27 (−1.73) 2.60 (−2.90)
GT Estimation 2.21 (+0.01) 2.95 (−0.20) 2.86 (−0.14) 3.83 (−1.67)

Estimation Estimation 2.20 3.15 3.00 5.50
1 Units: pan ϕ, tilt θ, and roll ψ [deg]; REPE [pixel]
2 The origin of the gain is that our method estimates both distortion parameters and image coordinates of VP/ADPs (bottom row)

Table S9. Comparison of the absolute parameter errors and reprojection errors on the test sets of each dataset

Dataset Method Mean absolute error1 ↓ REPE1 ↓ Executable

Pan ϕ Tilt θ Roll ψ f k1 rate1 ↑

SL-MH

López-Antequera et al. [7] CVPR’19 – 27.60 44.90 2.32 – 81.99 100.0
Wakai and Yamashita [17] ICCVW’21 – 10.70 14.97 2.73 – 30.02 100.0

Wakai et al. [18] ECCV’22 – 4.13 5.21 0.34 0.021 7.39 100.0
Pritts et al. [12] CVPR’18 25.35 42.52 18.54 – – – 96.7

Lochman et al. [6] WACV’21 22.36 44.42 33.20 6.09 – – 59.1
Ours (HRNet-W32) 2.20 3.15 3.00 0.34 0.020 5.50 100.0

SL-PB

López-Antequera et al. [7] CVPR19 – 26.18 41.94 2.11 – 73.68 100.0
Wakai and Yamashita [17] ICCVW’21 – 10.66 14.53 2.67 – 25.76 100.0

Wakai et al. [18] ECCV’22 – 4.06 5.71 0.36 0.024 7.99 100.0
Pritts et al. [12] CVPR’18 25.55 42.94 18.28 – – – 97.9

Lochman et al. [6] WACV’21 23.45 44.99 30.68 8.14 – – 39.1
Ours (HRNet-W32) 2.30 3.13 3.09 0.36 0.022 5.89 100.0

SP360

López-Antequera et al. [7] CVPR19 – 28.66 44.45 3.26 – 84.56 100.0
Wakai and Yamashita [17] ICCVW’21 – 11.12 17.70 2.67 – 32.01 100.0

Wakai et al. [18] ECCV’22 – 3.75 5.19 0.39 0.023 7.39 100.0
Pritts et al. [12] CVPR’18 25.39 42.79 18.35 – – – 98.5

Lochman et al. [6] WACV’21 22.84 45.38 31.91 6.81 – – 53.7
Ours (HRNet-W32) 2.16 2.92 2.79 0.37 0.023 5.60 100.0

HoliCity

López-Antequera et al. [7] CVPR’19 – 65.92 50.31 2.27 – 96.63 100.0
Wakai and Yamashita [17] ICCVW’21 – 12.18 26.00 2.56 – 34.99 100.0

Wakai et al. [18] ECCV’22 – 6.55 16.05 0.48 0.028 19.37 100.0
Pritts et al. [12] CVPR’18 25.45 43.22 17.84 – – – 99.6

Lochman et al. [6] WACV’21 22.63 45.11 32.58 6.71 – – 83.9
Ours (HRNet-W32) 3.48 4.08 3.84 0.48 0.028 7.62 100.0

1 Units: pan ϕ, tilt θ, and roll ψ [deg]; f [mm]; k1 [dimensionless]; REPE [pixel]; Executable rate [%]

S5.8.1 Vanishing point estimation

As described in Section 4.4.1 (main paper), the VP estima-
tor detected the VP/ADPs, although the performance in the
cross-domain evaluation decreased in Table S11. In addi-
tion, Table S11 reveals that ADP detection is more difficult
than VP detection because VPs generally have specific ap-
pearances at infinity. In the cross-domain evaluation, mod-
els trained by HoliCity could adapt well to other domains.

To demonstrate the robustness of our heatmap-based VP
estimator, we visualized the results of VP/ADPs. Figure S8
shows qualitative results of the VP estimator using HRNet-
W32. Although the test images were affected by various
types of rotation and distortion, the VP estimator achieved
stable VP/ADP detection from the centers of images to their
edges. Each estimated VP/ADP heatmap has a single peak
for VP/ADPs. Such a single peak, with little noise, indi-
cates that the VP estimator was well-optimized. In addition,
many test images contain large regions of sky or road sur-
face with few geometric cues such as arcs; however, the VP

estimator handled these images successfully. Therefore, the
VP estimator was able to robustly detect VP/ADPs.

S5.8.2 Recovered images

Synthetic images. Figure S9 shows the additional qualita-
tive results obtained on synthetic images. Similarly to Fig-
ure 6 (main paper), our results are the most similar to the
ground-truth images. By contrast, the quality of the recov-
ered images that contain a few arcs was notably degraded
when the geometry-based methods proposed by Pritts et
al. [12] and Lochman et al. [6] were used. In particular,
Lochman et al.’s method [6] tended to result in execution
failure on these images. Additionally, the learning-based
methods proposed by López-Antequera et al. [7], Wakai
and Yamashita [17], and Wakai et al. [18] did not recover
the pan angles; that is, vertical magenta and yellow lines are
not located at the centers of the images produced by these
methods, shown in Figure S9. We note that our method was
able to calibrate images of streets lined by large trees.



Table S10. Comparison on the cross-domain evaluation of the mean absolute rotation errors and reprojection errors

Dataset López-Antequera et al. [7] Wakai and Yamashita [17] Wakai et al. [18] Ours (HRNet-W32)CVPR’19 ICCVW’21 ECCV’22

Train Test Pan1 Tilt1 Roll1 REPE1 Pan Tilt Roll REPE Pan Tilt Roll REPE Pan Tilt Roll REPE

SL-MH
SL-PB – 31.11 45.16 83.42 – 12.99 27.13 39.43 – 5.51 12.02 14.89 2.98 3.72 3.63 6.82
SP360 – 28.91 45.23 82.68 – 12.29 38.42 55.72 – 9.11 37.54 43.56 8.06 8.34 7.77 17.85

HoliCity – 33.36 45.20 82.40 – 13.78 45.76 53.99 – 10.94 42.20 47.97 10.74 10.60 8.93 19.84

SL-PB
SL-MH – 26.92 46.35 76.09 – 11.65 26.50 36.48 – 5.18 13.77 16.99 3.04 3.58 3.39 6.68
SP360 – 28.29 48.10 78.87 – 12.57 40.25 47.50 – 9.61 40.05 46.07 8.78 8.93 8.28 18.66

HoliCity – 32.64 50.37 80.98 – 13.79 46.06 51.72 – 12.53 42.77 49.43 10.95 11.17 9.47 20.62

SP360
SL-MH – 32.44 47.18 90.97 – 16.25 41.12 49.02 – 8.72 38.96 47.89 6.52 6.82 6.52 15.66
SL-PB – 34.31 46.63 90.99 – 16.07 38.38 51.72 – 7.42 37.09 45.45 5.18 5.81 5.60 14.11

HoliCity – 30.84 49.19 83.43 – 16.66 44.42 55.47 – 12.83 43.81 51.26 12.65 12.11 10.41 20.48

HoliCity
SL-MH – 65.52 50.41 96.29 – 14.20 35.44 46.32 – 8.97 33.35 40.48 6.13 6.54 5.97 14.72
SL-PB – 65.69 50.95 96.84 – 15.00 47.07 56.54 – 9.59 42.28 49.38 5.26 5.88 5.73 14.85
SP360 – 64.43 51.59 96.59 – 13.67 42.39 50.36 – 9.43 37.83 43.59 6.10 6.57 6.37 13.31

1 Units: pan, tilt, and roll [deg]; REPE [pixel]

Table S11. Results of the cross-domain evaluation for our VP estimator using HRNet-W32

Dataset Keypoint metric ↑ Mean distance error [pixel] ↓
Train Test AP AP50 AP75 AR AR50 AR75 PCK front left right top bottom VP1 ADP1 All1

SL-MH

SL-MH 0.99 0.99 0.99 0.97 0.98 0.98 0.99 2.67 2.90 2.52 1.90 1.72 2.39 3.64 3.10
SL-PB 0.98 0.99 0.99 0.96 0.97 0.97 0.98 3.51 3.50 3.11 2.34 2.02 2.97 4.52 3.85
SP360 0.85 0.94 0.90 0.79 0.87 0.83 0.83 6.55 7.42 6.18 5.34 11.77 7.44 14.95 11.57

HoliCity 0.80 0.92 0.86 0.72 0.83 0.78 0.77 9.73 12.27 9.75 8.54 6.60 9.47 17.92 14.11

SL-PB

SL-MH 0.99 0.99 0.99 0.96 0.97 0.97 0.99 3.26 3.49 3.10 2.04 1.74 2.79 4.63 3.84
SL-PB 0.99 0.99 0.99 0.97 0.97 0.97 0.99 2.91 2.93 2.48 1.97 1.80 2.49 3.68 3.17
SP360 0.82 0.92 0.87 0.75 0.85 0.81 0.81 7.72 8.65 7.53 5.41 12.74 8.42 15.88 12.53

HoliCity 0.77 0.91 0.83 0.70 0.82 0.76 0.74 11.33 13.33 11.34 10.63 7.14 10.84 19.49 15.60

SP360

SL-MH 0.95 0.98 0.97 0.89 0.91 0.91 0.94 5.13 5.38 4.46 4.24 4.67 4.88 9.78 7.63
SL-PB 0.95 0.98 0.97 0.88 0.91 0.90 0.94 4.66 4.86 4.12 4.83 3.69 4.50 10.14 7.66
SP360 0.99 1.00 1.00 0.98 0.98 0.98 0.99 2.64 2.61 2.37 1.78 1.80 2.29 3.20 2.81

HoliCity 0.79 0.92 0.85 0.69 0.79 0.75 0.77 12.44 14.20 11.33 8.20 6.02 10.70 19.38 15.45

HoliCity

SL-MH 0.95 0.98 0.97 0.89 0.91 0.91 0.95 4.80 5.07 4.44 3.89 4.50 4.61 10.50 7.89
SL-PB 0.95 0.98 0.97 0.89 0.91 0.91 0.95 5.11 5.00 4.22 4.67 3.65 4.64 10.23 7.76
SP360 0.89 0.96 0.93 0.84 0.90 0.87 0.88 5.42 6.75 6.05 3.34 9.59 6.20 12.11 9.48

HoliCity 0.98 0.99 0.99 0.95 0.96 0.96 0.98 3.44 3.87 3.30 3.30 2.66 3.36 5.70 4.68
1 VP denotes all 5 VPs; ADP denotes all 8 ADPs; All denotes all points consisting of 5 VPs and 8 ADPs

To validate the effectiveness of our method, we also
demonstrated the qualitative results in the cross-domain
evaluation. Figure S10 shows the qualitative results in
the cross-domain evaluation on the HoliCity test set when
learning-based methods were trained on SL-MH. Conven-
tional learning-based methods tended to have rotation errors
in the cross-domain evaluation, as shown in Table S10. We
found that Wakai et al.’s method [18] often recovered im-
ages upside down in a cloudy sky. This observation suggests
that regression-based methods that do not use heatmaps,
such as Wakai et al.’s method [18], tend to misinterpret the
cloudy sky as a gray road. It should be noted that the images
in HoliCity were captured in London, where the weather is
often cloudy all year round. This phenomenon implies that
regression-based methods that do not use heatmaps estimate
the roll angles mainly based on the sky and road regions.
Although the sky and roads generally occupy large areas of
these regions, which have fewer geometric cues, seem to
lead to unstable estimation. By contrast, our method, which

uses heatmaps, can extract robust features through geomet-
ric VP/ADPs. Therefore, our method achieved robust esti-
mation in various domains.

Off-the-shelf cameras. Following [18], we also eval-
uated calibration methods using six off-the-shelf fisheye
cameras to validate the effectiveness of our method. Fig-
ure S11 shows the qualitative results on images from off-
the-shelf fisheye cameras using SL-MH for training. Sim-
ilarly to Figure 7 (main paper), our method substantially
outperformed the methods proposed by López-Antequera et
al. [7], Wakai and Yamashita [17], Wakai et al. [18], Pritts et
al. [12], and Lochman et al. [6] with respect to the quality
of the recovered images. Furthermore, these results demon-
strate the robustness of our method for four types of camera
projection: equisolid angle projection, orthogonal projec-
tion, equidistant projection, and stereographic projection.
A promising direction for future work is to quantitatively
evaluate our method using off-the-shelf fisheye cameras in
various scenes.
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Figure S6. Error distribution of angles in our method using HRNet-W32 on the test sets of (a) SL-MH, (b) SL-PB, (c) SP360, and (d)
HoliCity. Ground-truth and estimated angles are indicated on the horizontal and vertical axes, respectively. The diagonal red lines represent
perfect estimation without angle errors. Each estimation result for the test images is depicted as a translucent blue point.
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Figure S7. Error distribution of our method on the test sets of (a) SL-MH, (b) SL-PB, (c) SP360, and (d) HoliCity. Mean absolute errors
are shown in divided ranges as box and violin plots.
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