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S1. Comparisons to existing work
RL-Based Methods such as [7, 13] have shown effectiveness in operating on a limited set of prompts (< 10 and <
1000 respectively) but do not generalize as well to the open-vocabulary setting as shown in [9, 34]. We found this in our
experiments as well, where training using the DDPO scheme on SD1.5 did not improve the win rate versus DPO. Recent
post-submission work [61], however, recently demonstrated promise applying these methods at scale to smaller (SD1.5)
diffusion models.

While DDPO [7] is an RL-based method as is DPOK [13], their target objective and distributional guarantees are different.
Specifically, DDPO purely aims to optimize the reward function without any KL-regularization

Ec∼p(c),x0∼pθ(x0|c)r(x0, c) (15)

while DPOK adds in a term governing KL-regularization between the learned distribution and a reference distribution as in
our setting. This means that DDPO is optimizing the same objective as DRaFT and AlignProp ([9, 34]) but via RL instead of
gradient descent through the diffusion chain. DDPO uses early stopping in lieu of distributional control.

Additionally, through the score function policy gradient estimator employed by DDPO it is observable why the method
struggles with open vocabulary generation. The gradient estimation used is

∇θJDDRL = E
T∑
t=0

pθ(xt−1 | xt, c)
pθold(xt−1 | xt, c)

∇θ log pθ(xt−1 | xt, c) r(x0, c) (16)

Here the trajectories {xT ,xT−1, . . . ,x0} are generated by the original model pθold . In this formulation, the term
pθ(xt−1|xt,c)

pθold
simply is an importance weighter which scales gradient contributions based on the relevance of the sample

(as determined by how aligned the learned and reference model predictions are). Since the trajectories are generated by the
“old” (reference) model, r(x0, c) is only a weighting in the latter term ∇θ log pθ(xt−1 | xt, c) r(x0, c). The gradient en-
courages higher likelihoods for generations of high reward, but makes no distinction about the diversity of those generations.
High-reward prompts can dominate the gradient trajectory, while generations considered lower-reward are ignored or discour-
aged. This stands in contrast to the DPO framework where the likelihood of a generation is contrasted against another with
the same conditioning. This normalization across conditioning prevents sets of c being considered unimportant/undesirable
and not being optimized for. In Diffusion-DPO, conditionings with all types of reward magnitudes are weighted equally
towards the xw0 and away from the xl0.

Inference Time-Optimization namely DOODL [54], does not learn any new model parameters, instead optimizing diffu-
sion latents to improve some criterion on the generated image similar to CLIP+VQGAN[10]. This runtime compute increases
inference cost by more than an order of magnitude.

Reward Maximization Training such as [9, 34] amortize the cost of DOODL from runtime to training. They train by
generating images from text prompts, computing a reward loss on the images, and backpropagating gradients through the
generative process to improve the loss. While effective in the open-vocabulary setting (also training on Pick-a-Pic prompts),
these methods provide no distributional guarantees (unlike the control via β in Diffusion-DPO) and suffer from mode collapse
with over-training. These methods do not generalize to all reward functions, with [9] noting the inability of DRaFT to improve
image-text alignment using CLIP[35] as a reward function. In contrast, Diffusion-DPO can improve image-text alignment
using CLIP preference, as shown in Sec. 5.4. Furthermore, only differentiable rewards can be optimized towards in the
reward maximization setting. This necessitates not only data collection but also reward model training.

Dataset Curation As discussed, models such as StableDiffusion variants [33, 39] train on laion-aesthetics [40] to bias
the model towards more visually appealing outputs. Concurrent work Emu [11] takes this approach to an extreme. Instead



of training on any images from a web-scale dataset which pass a certain model score threshold, they employ a multi-stage
pipeline where such filtering is only the first stage. Subsequently, crowd workers filter the subset down using human judge-
ment and at the final stage expert in photography are employed to create the dataset. While effective, this process has several
drawbacks compared to Diffusion-DPO. First, necessitating training on existing data can be a bottleneck, both in terms of
scale and potential applications. While [11] reports lesser text faithfulness improvements as well, these are likely due to the
hand-written captions, a much more costly data collection stage than preferences. The Emu pipeline is not generalizable to
different types of feedback as DPO is (e.g. outside of recaptioning it is non-obvious how such an approach can improve
text-image alignment).

S1.1. Experiments

DDPO We compare a DPO-tuned SD2.1 model to the DDPO-tuned SD2.1 from CarperAI [1] on Partiprompts (general
preference). The DPO model has a win rate of 59.7%, maintaining a significant margin of improvement. We additionally
use the public diffusers DDPO implementation to train a SD1.5 model on Pick-a-Pic prompts, our DPO SD1.5 model
maintains a 55.7% win rate against this model as well. Given the outperformance of DPOK by DDPO shown in [8] we do
not directly compare to DPOK.

Emu We test Emu-style finetuning [11] on Pick-a-Pic by selecting the top 1% and 0.1% ( ∼10k and ∼1k samples re-
spectively, comparable to Emu) of the images by PickScore and tune SDXL using hyperparameters from [11]. While such
training improves upon SFT, it still falls significantly short of Diffusion-DPO, winning < 45% of head-to-head PartiPrompt
comparisons vs. DPO-SDXL in both cases.

S2. Details of the Primary Derivation
Starting from Eq. (5), we have

min
pθ

− Epθ(x0|c)r(c,x0)/β + DKL(pθ(x0|c)||pref(x0|c))

≤ min
pθ

− Epθ(x0|c)r(c,x0)/β + DKL (pθ(x0:T |c)||pref(x0:T |c))

= min
pθ

− Epθ(x0:T |c)R(c,x0:T )/β + DKL (pθ(x0:T |c)||pref(x0:T |c))

= min
pθ

Epθ(x0:T |c)

(
log

pθ(x0:T |c)
pref(x0:T |c) exp(R(c,x0:T )/β)/Z(c)

− logZ(c)

)
= min

pθ
DKL (pθ(x0:T |c)∥pref(x0:T |c) exp(R(c,x0:T )/β)/Z(c)) .

(17)

where Z(c) =
∑

x pref(x0:T |c) exp (r(c,x0)/β) is the partition function. The optimal p∗θ(x0:T |c) of Equation (17) has a
unique closed-form solution:

p∗θ(x0:T |c) = pref(x0:T |c) exp(R(c,x0:T )/β)/Z(c),

Therefore, we have the reparameterization of reward function

R(c,x0:T ) = β log
p∗θ(x0:T |c)
pref(x0:T |c)

+ β logZ(c).

Plug this into the definition of r, hence we have

r(c,x0) = βEpθ(x1:T |x0,c)

[
log

p∗θ(x0:T |c)
pref(x0:T |c)

]
+ β logZ(c).

Substituting this reward reparameterization into maximum likelihood objective of the Bradly-Terry model as Eq. (4), the
partition function cancels for image pairs, and we get a maximum likelihood objective defined on diffusion models, its
per-example formula is:

LDPO-Diffusion(θ) = − log σ

(
βExw

1:T∼pθ(x1:T |xw
0 ),xl

1:T∼pθ(xl
1:T |xl

0)

[
log

pθ(x
w
0:T )

pref(xw0:T )
− log

pθ(x
l
0:T )

pref(xl0:T )

])
where xw0 ,x

l
0 are from static dataset, we drop c for simplicity.



An approximation for reverse process Since sampling from pθ(x1:T |x0) is intractable, we utilize q(x1:T |x0) for approx-
imation.

L1(θ) = − log σ

(
βExw

1:T∼q(x1:T |xw
0 ),xl

1:T∼q(x1:T |xl
0)

[
log

pθ(x
w
0:T )

pref(xw0:T )
− log

pθ(x
l
0:T )

pref(xl0:T )

])
= − log σ

(
βExw

1:T∼q(x1:T |xw
0 ),xl

1:T∼q(x1:T |xl
0)

[
T∑
t=1

log
pθ(x

w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])

= − log σ

(
βExw

1:T∼q(x1:T |xw
0 ),xl

1:T∼q(x1:T |xl
0)
TEt

[
log

pθ(x
w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])
= − log σ

(
βTEtExw

t−1,t∼q(xt−1,t|xw
0 ),xl

t−1,t∼q(xt−1,t|xl
0)

[
log

pθ(x
w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])
= − log σ

(
βTEt,xw

t ∼q(xt|xw
0 ),xl

t∼q(xt|xl
0)

Exw
t−1∼q(xt−1|xw

t ,x
w
0 ),xl

t−1∼q(xt−1|xl
t,x

l
0)

[
log

pθ(x
w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])

(18)

By Jensen’s inequality, we have

L1(θ) ≤ −Et,xw
t ∼q(xt|xw

0 ),xl
t∼q(xt|xl

0)
log σ

(
βTExw

t−1∼q(xt−1|xw
t ,x

w
0 ),xl

t−1∼q(xt−1|xl
t,x

l
0)

[
log

pθ(x
w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])
= −Et,xw

t ∼q(xt|xw
0 ),xl

t∼q(xt|xl
0)
log σ

(
−βT

(
DKL(q(x

w
t−1|xw0,t)∥pθ(xwt−1|xwt ))− DKL(q(x

w
t−1|xw0,t)∥pref(x

w
t−1|xwt ))

−
(
DKL(q(x

l
t−1|xl0,t)∥pθ(xlt−1|xlt)) + DKL(q(x

l
t−1|xl0,t)∥pref(x

l
t−1|xlt)

)))
Using the Gaussian parameterization of the reverse process (Eq. (1)), the above loss simplifies to:

L1(θ) ≤ −Et,ϵw,ϵl log σ (−βTω(λt) ( ∥ϵw−ϵθ(x
w
t , t)∥2−∥ϵw−ϵref(x

w
t , t)∥2 −

(
∥ϵl − ϵθ(x

l
t, t)∥2 − ∥ϵl − ϵref(x

l
t, t)∥2

)))
where ϵw, ϵl ∼ N (0, I), xt ∼ q(xt|x0) thus xt = αtx0 + σtϵ. Same as Eq. (2), λt = α2

t /σ
2
t is a signal-to-noise ratio

term [23], in practice, the reweighting assigns each term the same weight [19].

An alternative approximation Note that for Eq. (18) we utilize q(x1:T |x0) to approximate pθ(x1:T |x0). For each
step, it is to use q(xt−1,t|x0) to approximate pθ(xt−1,t|x0). Alternatively, we also propose to use q(xt|x0)pθ(xt−1|xt)
for approximation. And this approximation yields lower error because DKL(q(xt|x0)pθ(xt−1|xt)∥pθ(xt−1,t|x0)) =
DKL(q(xt|x0)∥pθ(xt|x0)) < DKL(q(xt−1,t|x0)∥pθ(xt−1,t|x0)).

LDPO-Diffusion(θ) = − log σ

(
βExw

1:T∼pθ(x1:T |xw
0 ),xl

1:T∼pθ(x1:T |xl
0)

[
log

pθ(x
w
0:T )

pref(xw0:T )
− log

pθ(x
l
0:T )

pref(xl0:T )

])
= − log σ

(
βExw

1:T∼pθ(x1:T |xw
0 ),xl

1:T∼pθ(x1:T |xl
0)

[
T∑
t=1

log
pθ(x

w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])

= − log σ

(
βExw

1:T∼pθ(x1:T |xw
0 ),xl

1:T∼pθ(x1:T |xl
0)
TEt

[
log

pθ(x
w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])
= − log σ

(
βTEtExw

t−1,t∼pθ(xt−1,t|xw
0 ),xl

t−1,t∼pθ(xt−1,t|xl
0)

[
log

pθ(x
w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])
.



By approximating pθ(xt−1,t|x0) with q(xt|x0)pθ(xt−1|xt), we have

L2(θ) = − log σ

(
βTEtExw

t−1,t∼q(xt|xw
0 )pθ(xt−1|xw

t ),xl
t−1,t∼q(xt|xl

0)pθ(xt−1|xl
t)

[
log

pθ(x
w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])
= − log σ

(
βTEt,xw

t ∼q(xt|xw
0 ),xl

t∼q(xt|xl
0)
Exw

t−1∼pθ(xt−1|xw
t ),xl

t−1∼pθ(xt−1|xl
t)

[
log

pθ(x
w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])
.

By Jensen’s inequality, we have

L2(θ) ≤ −Et,xw
t ∼q(xt|xw

0 ),xl
t∼q(xt|xl

0)
log σ

(
βTExw

t−1∼pθ(xt−1|xw
t ),xl

t−1∼pθ(xt−1|xl
t)

[
log

pθ(x
w
t−1|xwt )

pref(xwt−1|xwt )
− log

pθ(x
l
t−1|xlt)

pref(xlt−1|xt)

])
= −Et,xw

t ∼q(xt|xw
0 ),xl

t∼q(xt|xl
0)
log σ

(
βT
(
DKL(pθ(x

w
t−1|xwt )∥pref(x

w
t−1|xwt ))− DKL(pθ(x

l
t−1|xlt)∥pref(x

l
t−1|xlt)

))
Using the Gaussian parameterization of the reverse process (Eq. (1)), the above loss simplifies to:

L2(θ) = −Et,ϵw,ϵl log σ
(
−βTω(λt)

(
∥ϵθ(xwt , t)− ϵref(x

w
t , t)∥2 − ∥ϵθ(xlt, t)− ϵref(x

l
t, t)∥2

))
where ϵw, ϵl ∼ N (0, I), xt ∼ q(xt|x0) thus xt = αtx0 + σtϵ. Same as Eq. (2), λt = α2

t /σ
2
t is a signal-to-noise ratio

term [23], in practice, the reweighting assigns each term the same weight [19].

S3. Alternate Derivation: Reinforcement Learning Perspective
We can also derive our objective as a multi-step RL approach, in the same setting as [7, 13]. A Markov Decision Process
(MDP) is a tuple (S,A, ρ0,P,R), where S is the state space, A is the action space, ρ0 is an initial state distribution, P is the
transition dynamics and R is the reward function. In this formulation, at each time step t a policy π(at|st) observes a state
st ∈ S and takes an action at ∈ A. The environment then transitions to a next state st+1 ∼ P(st+1|st, at) and the returns a
reward R(st, at).The goal of the policy is to maximize the total rewards it receives. Prior works [7, 13] map the denoising
process in diffusion model generation to this formulation via:

st ≜ (c,xt, t)

at ≜ xt

P(st+1|st,at) ≜ (δc, δt−1, δxt−1)

ρ(s0) ≜ (p(c), δT ,N (0, I))

R(st,at) =

{
r(c,x0) if t = 0

0 otherwise
(19)

where c is the prompt xt is the time-step t nosy image and δy is the Dirac delta function with unit density at y. That is
in this formulation we consider the denoising model as a policy, with each denoising step a step in an MDP. The objective of
the policy is to maximize the reward (alignment with human preference) of the final image. In the derivation below, we drop
the time step t for brevity. In this formulation the generative model is a policy and the denoising process is a rollout in an
MDP with a sparse reward received for the final generated image. Following [13] we optimize the following objective

Ec∼D,pθ

[
0∑

t=T

r(c,xt)− βDKL[pθ(xt−1|xt, c)||pref(xt−1|xt, c)]

]
(20)

While prior works [7, 13] use policy gradient approaches to optimize this objective, we’re going to use off-policy methods.
Following Control as Variational Inference [26], we have the following

Q∗((xt, c),xt−1) = r(c,xt) + V ∗(xt−1, c) (21)

V ∗(xt−1, c) = β logEpref [expQ
∗((xt, c),xt−1)/β] (22)



p∗(xt−1|(xt, c)) = pref(xt−1|xt, c)e(Q
∗((xt,c),xt−1)−V ∗(xt,c))/β (23)

where V ∗ is the optimal value function and Q∗ is the optimal state-action value function (in tour definition of the denoising
MDP, he policy is stochastic, but the dynamics is deterministic). Also notice that in Eq. 23 the equation is exact since the
right-hand side integrates to 1. We then consider the inverse soft Bellman operator [15] and have the following

r(c,xt) = V ∗(xt−1, c)−Q∗((xt, c),xt−1) (24)

However, from Eq. 23 we have

Q∗((xt, c),xt−1)− V ∗(xt, c) = log
p∗(xt−1|xt, c)
pref(xt−1|xt, c)

(25)

substituting in Eq. 24 we obtain:

r(c,xt) = V ∗(xt−1, c) + log
p∗(xt−1|xt, c)
pref(xt−1|xt, c)

− V ∗(xt, c) (26)

Using a telescoping sum through the diffusion chain we are left with

r(c,x0) =

T∑
t=0

log
p∗(xt−1|xt, c)
pref(xt−1|xt, c)

− V ∗(xT , c) (27)

since by definition all intermediate rewards are zero. If we assume both diffusion chains start from the same state and plug
this result into the preference formulation of Eq. 3 we obtain the objective of Eq. 11. Here we optimize the same objective
as prior works [7, 13], but instead of a policy gradient approach we derive our objective as an off-policy learning problem in
the same MDP. This not only simplifies the algorithm significantly, but justifies our sampling choices in Eq. 13 and we do
not have to sample through the entire difussion chain.

S4. Alternative Derivation: Noise-Aware Preference Model
Paralleling the original DPO formulation we consider a policy trained on maximizing the likelihood of p(x0|c, t, xobs) where
xobs is a noised version of x0. Here x0 is an image, c is a text caption, t is a noising scale, and xobs is a corruption (noised
version) of x0. We initialize from a reference diffusion policy pref. We aim to optimize the same RL objective of Eq. (5),
reprinted here for convenience:

max
pθ

Ec∼D,x0∼pθ(x0|c) [r(c,x0)]− βDKL [pθ(x0|c)∥pref(x0|c)] (28)

Our policy has additional conditioning (t, xobs). The latter is a noised version of x0. Define the space of noising operators
at time t as Qt where qt ∼ Qt with qt(x0) =

√
αtx0 +

√
1− αϵqt , ϵqt ∼ N(0, I). Here qt refers to the linear transform

corresponding with a specific gaussian draw ∼ N(0, I) and the set of qt is Qt. In general at some time level t we have
yobs = qt(x0) for some qt ∼ Qt so can write the conditioning as p(x0|c, t, qt(y)). We rewrite Eq. (28) as

max
pθ

E
c∼D,x0∼p(gen)

θ (x0|c),t∼U{0,T},qt∼QT

(
rϕ(c, x0)− βDKL

[
pθ(x0 | c, t, qt(x0)) || pref(x0 | c, t, qt(x0))

])
(29)

p(gen) denoting the generative process associated with p as a diffusion model. Note that the reward model is the same
formulation as in DPO. The optimal policy now becomes

p∗θ(x0 | c, t, qt(x0)) =
1

Z(c, t, qt)
pref(x0 | c, t, qt(x0)) exp

(
1

β
r(c, x0)

)
(30)

with Z a partition over captions, timesteps, and noising draws. Rearranging for r(c, x0) now yields

r(c, x0) = β log
p∗θ(x0 | c, t, qt)
pref(x0 | c, t, qt)

+ β logZ(c, t, qt), ∀t, qt (31)



We have not changed the reward model formulation at all, but our policies have extra conditioning as input (which ideally
the likelihoods are constant with respect to). Putting this formulation into the original Bradley-Terry framework of Eq. (3)
(re-printed here)

pBT(x
w
0 ≻ xl0|c) = σ(r(c,xw0 )− r(c,xl0)) (32)

results in the objective:

LDPO(pθ; pref) = −E(xw
0 ,x

l
0∼p(gen)(c),c∼D,t∼U{0,T},qt∼Qt

[
log σ

(
β log

pθ(x
w
0 | c, t, qt(xw0 ))

pref(xw0 | c, t, qt(xw0 ))
− β log

pθ(x
l
0 | c, t, qt(xl0))

pref(xl0 | c, t, qt(xl0))

)]
(33)

We now consider how to compute these likelihoods. Using the notation at =
√
αt and bt =

√
1− αt as shorthand for

commonly-used diffusion constants (α are defined as in DDIM[46]) we have

xobs = qt(x0) = atx0 + btϵ, ϵ ∼ N (0, I) (34)

We use Eq. 57 from DDIM[46] (along with their definition of σt):

p(x0|xt) = N (xpred0 , σ2
t I) (35)

Our xpred0 is:

xpred0 =
xobs − btϵ

pred
θ

at
=
atx0 + btϵ− btϵ

pred
θ

at
= x0 +

bt
at

(ϵ− ϵpredθ ) (36)

Here ϵpredθ is the output of ϵθ(c, t, xobs) Making the conditional likelihood:

pθ(x0|c, t, xobs) = N (x0;x0 +
bt
at

(ϵ− ϵpredθ ), σ2
t I) =

1

(2πσ2
t )
d/2

e
− b2t

2a2
t σ2

t
||ϵ−ϵpredθ ||22 (37)

For convenience we define

zt =
1

(2πσ2
t )
d/2

(38)

SE = ||ϵ− ϵpred||22 (39)

We will decorate the latter quantity (SE) with sub/superscripts later. For now we get:

pθ(x0|c, t, xobs) = zte
− b2t

2a2
t σ2

t
SE

(40)

We see to minimize

E
(xw

0 ,x
l
0∼p(gen)(c);c∼D,;t∼U{0,T};qt∼Qt

− log σ

(
β

(
log

pθ(x
w
0 |c, t, qt(xw0 ))

pref(xw0 |c, t, qt(xw0 )
− log

pθ(x
l
0|c, t, qt(xl0))

pref(xl0|c, t, qt(xl0)

))
= (41)

E
(xw

0 ,x
l
0∼p(gen)(c);c∼D,;t∼U{0,T};qt∼Qt

− log σ

(
β

(
log

zte
− b2t

2a2
t σ2

t
SE

(w)
θ

zte
− b2t

2a2
t σ2

t
SE

(w)
ref

− log
zte

− b2t
2a2

t σ2
t
SE

(l)
θ

zte
− b2t

2a2
t σ2

t
SE

(l)
ref

))
(42)

Here we use SE(d)
ψ = ||ϵqt − ψ(c, t, qt(x

d
0))||22 to denote the L2 error in the noise prediction of model ψ operating on

the noisy qt(xd0) with corresponding conditioning (c, t) (d ∈ {w, l}). Here the model associated with SE∗
ref is the model of

the reference policy pref. Note that these SE terms are the standard diffusion training objective from Eq. (2). Continuing to
simplify the above yields:



− log σ

β
log

zte
− b2t
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We can simplify the coefficient:
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Resulting in objective

≈ E
x,yw,yl∼D;t;ϵ∼N (0,I)
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Up to the approximation of Eq. (45) this is the equivalent to Eq. (33). The log of the likelihood ratios simply take on the
elegant form of a difference in diffusion training losses. Due to the equation negatives and log σ being a monotonic increasing
function, by minimizing Eq. (46) we are aiming to minimize the inside term(

(SE
(w)
θ − SE

(w)
ref )− (SE

(l)
θ − SE

(l)
ref )
)

(47)

This can be done by minimizing SE(w)
θ or maximizing SE(l)

θ , with the precise loss value depending on how these compare
to the reference errors SE(w)

ref , SE
(l)
ref . The asymmetry of the log σ function allows β to control the penalty for deviating from

the reference distribution. A high β results in a highly assymetric distribution, disproportionately penalizing low SE
(l)
θ and

high SE(w)
θ and encouraging a pθ to make less mistakes in implicitly scoring yw, yl by deviating less from the reference

policy pref. We visualize the log σ curves in Figure S1 for several values of β.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y = log (x)
= 0.5
= 1
= 2

Figure S1. Visualization of y = − log σ(βx)

S4.1. Reward Estimation

Finally, we note that in this formulation that if we wish to compute the noise-aware reward difference r(c, xA0 ) − r(c, xB0 ),
referring to Eq. (31) this now has form



r(c, xA0 )− r(c, xB0 ) =
[
β(SEAθ − SEAref) + β logZ(c, t, qt)

]
−
[
β(SEBθ − SEBref) + β logZ(c, t, qt)

]
, ∀c, t, qt (48)

= β
[
(SEAθ − SEAref)− (SEBθ − SEBref)

]
, ∀c, t, qt (49)

(50)

Which means for two images (xA0 , x
B
0 ) with the same conditioning c we can estimate the reward difference using Eq. (48).

When doing this it improves the estimate to average over multiple draws (t, qt). We use this method in Table S2.

S5. β Ablation

Figure S2. Median PickScores for generations on the Pick-a-Pic v2 validation set for different choices of β

For β far below the displayed regime, the diffusion model degenerates into a pure reward scoring model. Much greater,
and the KL-divergence penalty greatly restricts any appreciable adaptation. Qualitative examples are shown in Figure S3

S6. Further SFT Discussions
We also partially attribute this difference in effectiveness of SFT to the gap in pretraining vs. downstream task considered in
the original DPO paper [36] vs. our work. On two of the DPO LLM tasks (sentiment generation, single-turn dialogue),
generic off-the-shelf autoregressive language models are tuned on specific tasks in the SFT stage. In the final setting, sum-
marization, the SFT model has been pretrained on a similar task/dataset. In this case, finetuning on the “preferred” dataset
(preferred-FT) baseline performs comparably to the SFT initialization.

This final setting is most analogous to that of Diffusion-DPO. The generic pretraining, task, and evaluation setting are all
text-to-image generation. There is no task-specific domain gap and all of the settings are open-vocabulary with a broad range
of styles. As such, our findings are similar to that of summarization in [36] where an already task-tuned model does not
benefit from preferred finetuning.

S7. Ethics
The performance of Diffusion-DPO is impressive, but any effort in text-to-image generation presents ethical risks, particu-
larly when data are web-collected. Generations of harmful, hateful, fake or sexually explicit content are known risk vectors.
Beyond that, this approach is increasingly subject to the biases of the participating labelers (in addition to the biases present in
the pretrained model); Diffusion-DPO can learn and propagate these preferences. As a result, a diverse and representative set
of labelers is essential – whose preferences in turn become encoded in the dataset. Furthermore, a portion of user-generated
Pick-a-Pic prompts are overtly sexual, and even innocuous prompts may deliver images that skew more suggestively (par-
ticularly for prompts that hyper-sexualize women). Finally, as with all text-to-image models, the image produced will not
always match the prompt. Hearteningly though, some of these scenarios can be addressed at a dataset level, and data filtering
is also possible.

S8. Additional Automated Metrics
Automated metrics on Pick-a-Pic validation captions are shown in Figure S4 for DPO-SDXL. The y-axis measures the
fraction of head-to-head generation comparisions for a prompt that DPO-SDXL scores higher than the baseline SDXL.
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Figure S3. For too low of β, generations initially improve but subsequently degenerate. For sufficiently large β, generations remain similar
to initialization.

Figure S4. Box plots of automated metrics vs. SDXL baseline. All 500 unique prompts from PickScore validation set.

Property Attribute binding Obj. relationships Complex
Benchmark Color Shape Texture Spatial Non-spatial Complex

Metric B-VQA B-VQA B-VQA UniDet CLIP 3-in-1
SDXL 0.583 0.489 0.549 0.187 0.312 0.311

DPO-SDXL 0.680 0.522 0.616 0.196 0.316 0.332

Table S1. Proposed metrics from T2I-CompBench [20]

S9. PickScore Rejection Sampling
Rejection sampling was used in [24] as a powerful inference-time tool. 100 samples were drawn from variants of a prompt
and PickScore-ranked, with the highest scored images being compared to a single random draw. PickScore selections were
human-preferred 71.4% of the time. We compare using additional compute at inference vs. additional training in Figure S5.
We plot the expected PickScore win rate of n draws from the reference model against a single draw from the learned (DPO)



model. The mean inference compute for baseline rejection sampling to surpass the DPO-trained model is 10× higher in both
cases. For 7% (SDXL) and 16% (SD1.5) of the prompts even 100 draws is insufficient.

Figure S5. The number of draws from the reference model vs. the probability that maximum PickScore of the draws exceeds a single DPO
generation. 500 PickScore validation prompts used. Mean (including 100s)/Median: SDXL (13.7, 3), SD1.5 (25.6, 7).



S10. Pseudocode for Training Objective
def loss(model, ref_model, x_w, x_l, c, beta):

"""
# This is an example psuedo-code snippet for calculating the Diffusion-DPO loss
# on a single image pair with corresponding caption

model: Diffusion model that accepts prompt conditioning c and time conditioning t
ref_model: Frozen initialization of model
x_w: Preferred Image (latents in this work)
x_l: Non-Preferred Image (latents in this work)
c: Conditioning (text in this work)
beta: Regularization Parameter

returns: DPO loss value
"""
timestep = torch.randint(0, 1000)
noise = torch.randn_like(x_w)
noisy_x_w = add_noise(x_w, noise, t)
noisy_x_l = add_noise(x_l, noise, t)

model_w_pred = model(noisy_x_w, c, t)
model_l_pred = model(noisy_x_l, c, t)
ref_w_pred = ref(noisy_x_w, c, t)
ref_l_pred = ref(noisy_x_l, c, t)

model_w_err = (model_w_pred - noise).norm().pow(2)
model_l_err = (model_l_pred - noise).norm().pow(2)
ref_w_err = (ref_w_pred - noise).norm().pow(2)
ref_l_err = (ref_l_pred - noise).norm().pow(2)

w_diff = model_w_err - ref_w_err
l_diff = model_l_err - ref_l_err

inside_term = -1 * beta * (w_diff - l_diff)

loss = -1 * log(sigmoid(inside_term))

return loss

S11. Additional Qualitative Results
In Figure S7 we present generations from DPO-SDXL on complex prompts from DALLE3 [17]. Other generations for
miscellaneous prompts are shown in Figure S6. In Fig. S 8 and 9 we display qualitative comparison results from HPSv2 with
random seeds from our human evaluation for prompt indices 200, 600, 1000, 1400, 1800, 2200, 2600, 3000.



Figure S6. DPO-SDXL gens on miscellaneous prompts Prompts (clockwise) (1) A bulldog mob boss, moody cinematic feel (2) A old
historical notebook detailing the discovery of unicorns (3) A purple raven flying over a forest of fall colors, imaginary documentary (4)
Small dinosaurs shopping in a grocery store, oil painting (5) A wolf wearing a sheep halloween costume going trick-or-treating at the farm
(6) A mummy studying hard in the library for finals, head in hands



Figure S7. DPO-SDXL gens on prompts from DALLE3 [17] Prompts: (1): A swirling, multicolored portal emerges from the depths of
an ocean of coffee, with waves of the rich liquid gently rippling outward. The portal engulfs a coffee cup, which serves as a gateway
to a fantastical dimension. The surrounding digital art landscape reflects the colors of the portal, creating an alluring scene of endless
possibilities. (2): In a fantastical setting, a highly detailed furry humanoid skunk with piercing eyes confidently poses in a medium shot,
wearing an animal hide jacket. The artist has masterfully rendered the character in digital art, capturing the intricate details of fur and
clothing texture"



SDXL DPO-SDXL

Figure S8. Prompts: (1) A kangaroo wearing an orange hoodie and blue sunglasses stands on the grass in front of the Sydney Opera House,
holding a sign that says Welcome Friends. (2) Anime Costa Blanca by Studio Ghibli. (3) There is a secret museum of magical items inside
a crystal greenhouse palace filled with intricate bookshelves, plants, and Victorian style decor. (4) A depiction of Hermione Granger from
the Harry Potter series as a zombie.



SDXL DPO-SDXL

Figure S9. (1) A portrait art of a necromancer, referencing DND and War craft. (2) Monalisa painting a portrait of Leonardo Da Vinci. (3)
There is a cyclist riding above all the pigeons. (4) A woman holding two rainbow slices of cake.
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