CAD : Photorealistic 3D Generation via Adversarial Distillation
Supplementary Material

A. Overview

In this supplemental material, additional implementation

details and experimental results are provided, including:

* Results of the user study (Section B);

* More details about the whole distillation pipeline (Section
C);

* More analysis regarding the pose pruning, distribution
refinement, diversity and consistency training (Section D);

* Video demo, which shows the photorealistic generation
of our method and qualitative video comparisons. Please
refer to in the project website.

B. User Study

To better evaluate the subjective quality and diversity of
3D generation, we conducted a user study to compare our
method with existing baselines. Specifically, we created a
test set comprising 10 images and prompts. For each case,
we utilized Zero-1-to-3 [4] and Magic123 [6] for generating
one 3D object, and Dreamfusion [5], ProlificDreamer [8],
along with our method for synthesizing multiple 3D objects.
Participants were then asked to rank the five groups from
highest to lowest, based on a comprehensive inspection of
various aspects, including rendering quality, photorealism,
and generation diversity. We collected surveys from 22
participants and calculated the percentages of each method
being selected as the top 1, 2, and 3, with the statistics shown
in Figure 1. Our method demonstrates clear superiority over
other methods, with more than 92% of users selecting it as
the best result, significantly surpassing the second-highest
percentage of 3.6% for Magic123 [6].

C. Implementation Details

The 3D generator architecture implemented in our paper is
an adaptation of EG3D [2], with several critical modifica-
tions designed for our 3D adversarial distillation framework:
1) We have omitted the generator pose conditioning since
our model targets general 3D objects, not specifically pose-
correlated faces. 2) To achieve increased compactness and
accelerated optimization, the maximum resolution of the
triplanes is reduced to 1282. 3) The raw (volumetric) ren-
dering resolution of the triplanes is fixed at 64 throughout
the distillation process. We rely on 3D upsampling for main-
taining multiview consistency. The generated triplanes are
confined within a [-0.7,0.7]® box, and we utilize a field of
view (FOV) of 49.1°, following a pinhole camera model. We
incorporate the absolute camera pose into the discriminator
to facilitate the generator in learning the correct 3D prior.
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Figure 1. Distribution of User Preferences. This graph illustrates
the percentages of participatns that ranked each method as their top
three choices, indicated by 1, 2, and 3, respectively.

For the reference viewpoint, we set the azimuth angle (¢)
to 180°, the distance from the center r» = 2, and determine
the polar angle () using the pose estimation module from
One-2-3-45 [3]. The pose for any other viewpoint is then
derived through relative transformation.

To ensure the efficiency of the adversarial distillation,
we do not adopt the on-the-fly way to sample I ~ pg from
a frozen diffusion model, instead we cache the sampling
in advance so that during the distillation we could directly
fetch the prior from the memory. Although sampling more
data prior will can lead to improved quality and diversity,
considering the efficiency we only restrict the pre-sampling
number to be 10K and enable the adaptive discriminator
augmentation (ADA) to stabilize the adversarial training.
Each sample is associated with a unique pose, uniformly
distributed across a sphere with a radius of 2.

In the process of distribution refinement, we apply differ-
ent noise strengths to different diffusion priors. Specifically,
a noise strength of 0.8 is utilized for the depth-conditioned
Control-Net. In the case of DeepFloyd, noise strengths of
0.3 and 0.7 are employed for its low-resolution and high-
resolution branches, respectively. Additionally, since during
refinement we are aware of the camera pose, thus we also
leverage the view-dependent prompting to effectively pre-
vent incorrect face generation when dealing with asymmetric
objects. Please noted in the main submission, for certain
data we use Control-Net for the refinement, while for the
rest we leverage DeepFloyd.

We adopt a two-stage approach for training the consistent
3D generator. During the first stage, image-space convo-
lutions are utilized to upscale the raw rendering from 128>
triplanes to calculate the adversarial loss. In the second stage,
a compact 3D upsampler is employed to lift the triplanes to
a 2562 resolution. This stage also incorporates patch-level
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Figure 2. Effects of the noise strength. We show the refinement results by using different diffusion models and various noise strengths.
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Figure 3. Diffusion refinement to ensure the sampled prior from
target distribution is high-quality.

GAN loss and LPIPS for supervision. Notably, we observe a
significant quality degradation when training the patch dis-
criminator with adaptive discriminator augmentation (ADA),
since the combination of random patch-level augmentation
will result in a larger gap compared with original rendering.
Hence, we disable ADA in the second stage of training to
maintain quality.

To obtain a 3D distribution based on a given reference im-
age and prompt, the entire distillation process takes around
three days at a 2562 image resolution, which includes 1.5
days for training the 2D upsampler branch, followed by an-
other 1.5 days for finetuning together with the 3D upsampler,
using 4 NVIDIA Tesla V100 GPUs. It is worth noting that
GAN training can sometimes be unstable, but the integra-
tion of our proposed pose pruning strategy could effectively
mitigate the need for dense parameter tuning in R1 regu-
larization, for which we consistently set the weight v = 3
across all experiments.
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Figure 4. Visualizations of pose pruning. We show the frequently
appeared errors while leveraging the view-dependent diffusion
model. By simultaneously considering the parallel sampled results
for the same viewpoint, our pruning strategy could effectively filter
out the wrong generations.
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D. Additional Analysis

Importance of distribution refinement. The impact of
the distribution refinement step on the distillation quality has
been demonstrated in the main paper. To further illustrate
its importance, we present a visualization in Figure 3. This
figure compares directly sampled results from Zero-1-to-3
with those refined by a 2D diffusion model. The refinement
process greatly enhances both the quality and diversity of the
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Figure 5. Comparisons between 3D generation without consis-

tency training and using our full model. By directly upsampling
the triplanes, the rendering from our model is naturally consistent.

target distribution, which makes the GAN training process
more effective.

Controlling Generation Diversity. We observed the most
significant factor that influences the generation diversity is
the noise strength used when sampling the prior. To bet-
ter demonstrate this observation, we show the refinement
results of different diffusion models with continuous noise
strengths in Figure. 2. Increasing noise strength results in
larger differences from the non-refined input, as it removes
more contents from the input. This makes noise strength
an effective tool for controlling diversity. However, when
using solely text-conditioned diffusion models like Deep-
Floyd [1], a higher noise strength (e.g., s > 0.7) can also
induce pose changes. In contrast, the depth-conditioned
Control-Net can effectively preserve pose-image correlation
due to the geometric constraints from depth. In our main
paper, to demonstrate the generality of our adversarial distil-
lation pipeline, we concurrently try the two diffusion models
with fixed noise strength. Consequently, the renderings of
some models closely resemble the reference image, while
others show larger differences yet retain similar semantics.

Visualization of pose pruning. As shown in Figure. 4,
incorporating view-conditioned diffusion models to address
sampling bias can result in errors such as mismatched se-
mantics with input views (first row), incorrect camera poses
(second row), and wrong 3D structures (third row), all of
which will have negative influences on the adversarial train-

ing. By considering two aspects including the geometry
consistency and semantic consistency, our pruning strategy
could effectively filter out these bad samples to make the 3D
GAN training stable again even with limited data.

Importance of consistency training. Limited by the effi-
ciency of volumetric rendering, most 3D GANs [2, 7] rely
on image-space convolution for upsampling raw renderings
to higher resolutions. While this approach may not result
in very visible inconsistencies for face modeling, it is in-
sufficient for synthesizing general 3D objects with a 360°
azimuth angle. In Figure 5, we compare 2D and 3D up-
sampling methods qualitatively. Although 2D upsampling
can ensure high rendering quality for each view, the appear-
ance differences become dramatically high when changing
camera poses. Our distillation method, however, bakes the
abilities of the 2D branch into the 3D branch, which could
effectively render multi-view consistent and photorealistic
images.

Inconsistent reconstruction with the reference. In the
main paper we only leverage w space for inversion to show-
case the potential application of CAD, which is not powerful
enough to faithfully recover the input, as pointed out by the
reviewer. To address this, we try the w+ space and note that
the reconstruction quality is improved. We believe integrat-
ing more advanced inversion techniques such as pivot tuning
could further improve the SVR consistency.
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