OMNIPARSER: A Unified Framework for Text Spotting, Key Information
Extraction and Table Recognition
(Supplementary Materials)

1. Implementation Details
1.1. Spatial-Window Prompting

Spatial-window prompting comprises two components: fixed
mode and random mode. In the fixed mode, the image is
divided into grid blocks evenly, such as 3x3 or 2x2. Con-
versely, in the random mode, the starting point of spatial
window is randomly determined. In order to encompass
more texts within the random box, the area of the random
box is established to be no less than 1/9 of the original im-
age. To elaborate further, a 30% probability is assigned for
selecting the fixed mode, another 30% probability for select-
ing the random mode, and a 40% probability for defaulting
window to cover the entire image. Following [6], we set the
bin size of coordinate vocab as 1000. The pseudo-code of
spatial-window prompting is shown in the following.

import random

3 # prob for different mode

prob = random.uniform(0, 1)
# quantizing coordinates with n_bins
n_bins = 1000

if prob < 0.4:
# default window
start_x, start_y, end_x, end_y =
n_bins - 1, n_bins - 1]
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» elif prob < 0.7:

# x-axis and y-axis are partitioned into
varying numbers of blocks.
num_xs = [3, 3, 1, 3, 2, 2, 2, 1]
num_ys = [3, 1, 3, 2, 3, 2, 1, 2]
total_windows = []
for num_x, num_y in zip (num_xs, num_ys) :
inter_x = min(int (n_bins / num_x), n_bins
- 1)
inter_y =
- 1)

min (int (n_bins / num_y), n_bins

for i in range (num_x) :
for j in range (num_y) :
start_x = ixinter_x
start_y = Jjxinter_y
end_x = min(start_x + inter_x,
n_bins - 1)

%

end_y = min(start_y + inter_y,
n_bins - 1)
total_windows.append([start_x,

start_y, end_x, end_y])

start_x, start_y, end_x, end_y = random.
choice (total_windows)
else:

inter = int (n_bins / 3)

start_x = random.randint (0, inter x 2)

start_y = random.randint (0, inter = 2)

rect_w, rect_h = random.randint (inter, n_bins
- 1), random.randint (inter, n_bins - 1)

end_x, end_y = min(start_x + rect_w, n_bins -
1), min(start_y + rect_h, n_bins - 1)

spatial_window_prompt = [start_x, start_y, end_x,

end_y]

1.2. Table Recognition

Given a table image, we resize it to 1,024x1,024 pixels.
The Structured Points Decoder, utilizing the feature vec-
tor from the Image Encoder, simultaneously generates pure
HTML tags with structural cell point sequences in the same
sequence representing the table’s logical and physical struc-
tures. These structural cell point sequences serve as start-
prompting input for the Content Decoder, which extracts ta-
ble cell contents in parallel. The final output combines pure
HTML tags with cell contents, forming complete HTML
sequences faithfully representing the table’s structure and
content.

Datasets. Since our model predicts both the logical structure
of tables with cell bounding box central points and cell con-
tent, datasets lacking cell content and corresponding bound-
ing box annotations, such as TABLE2LATEX-450K [2],
TableBank [8], UNLV [12], IC19B2H [3], WTW [9] and
TUCD [11], are not suitable for our approach. Simi-
larly, datasets like ICDAR2013Table [4], SciTSR [1], and
PubTables-1M [13], which provide cell content and content
box annotations, employ metrics based on box representa-
tions that are incompatible with our point-based format. Con-
sequently, PubTabNet (PTN) [16] and FinTabNet (FTN) [15]
are selected for our model evaluation.



GT Generation. The ground truth pure HTML tags of
tables are tokenized into structural tokens. Following the
previous works [5, 14], we use the merged labels to repre-
sent a non-spanning cell to reduce the length of the HTML
tags. Specifically, we use <td></td> and <td>[]</td> to
denote empty cells and non-empty cells, respectively. For a
cell spanning multiple rows or columns, the original HTML
tags are broken into four tokens: <td, colspan=“n" or rows-
pan=“n”", >, and </td>. We use the first token <td to
represent a spanning cell. In addition, four special symbol
categories need to be added: <S>, </S>, <PAD>, and
<UNK>, which represents the beginning of a sequence, the
end of a sequence, padding symbols, and unknown charac-
ters, respectively. For building the GT of Structured Points
Decoder, we insert center points of each cell text box to
corresponding HTML tags. For building the GT of Content
Decoder, we combine each cell text with corresponding cen-
ter points as a whole sequence where center points can be
viewed as a start-prompting input for recognizing text, and
each cell text is tokenized at the character level. An example
of building a training sequence GT for the Structured Points
Decoder and the Content Decoder in the table recognition
task is illustrated in Fig. 1.

GT for Structured Points Decoder h
<S>, <tr>, <td>, , </td>, <td, colspan="2",>, , </td>, </tr>,
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Figure 1. An Example of building training GTs for table
recognition task. We use the center points of each cell text box
to build GTs for the Structured Points Decoder and the Content
Decoder. If the cell is empty text, the corresponding points in
the GTs are left empty as well.

2. Comparisons with Donut on KIE Task

As shown in Fig. 2, OMNIPARSER can achieve entity ex-
traction while predicting the location of each entity word.
However, Donut only predicts the structured sequence for
entity extraction without any localization ability. Thus, the
absence of direct region supervision during both training and
prediction stages often leads to inferior results for entities of

same values (Row 1), repeated entities (Row 2) or entities
with explicit trigger names (Row 3).

3. Training Donut on Table Recognition Task

We fine-tuned the OCR-free end-to-end model Donut [7] for
table recognition on FinTabNet dataset. The ground truth
sequence utilized combined HTML tags with table cell text,
and we use different training hyper-parameters for adequate
verification, as shown in Tab. 1. Due to GPU memory limita-
tions, we constrained the decoder’s max length in Donut to
4,000. Note that the original HTML sequence max lengths
for PubTabNet and FinTabNet are 8,722 and 8,035, respec-
tively. For long sequence prediction tasks such as table
recognition, training an end-to-end model like Donut with
combined HTML stages, including cell text, is non-trivial.
There is a high probability of error accumulation and atten-
tion drift in long-sequence scenarios leading to the inferior
performance of Donut for table recognition. An illustrative
example of a failure case for Donut in table recognition task
is shown in Fig. 3. Specifically, due to the lack of region su-
pervision, the end-to-end model Donut has demonstrated an
attention drift problem, resulting in the prediction of repeated
tokens and leading to a high probability of error accumula-
tion in long-sequence scenarios. In contrast, OMNIPARSER
decomposes the location-aware structured points sequence
and cell text recognition generation, alleviating the issues of
attention drift and error accumulation.

Methods LR Epoch S-TEDS TEDS
3e-5 20 22.2 17.2
3e-5 40 26.2 20.0

Donut [7] le-4 40 30.7 29.1

le-3 40 41.7 40.5
le-3 100 41.9 41.2

91.55 89.75

OMNIPARSER (ours) - -

Table 1. Comparisons of different training hyper-parameters of
Donut on FinTabNet datasets. LR is short for learning rate.

4. Generalization to Hierarchical Text Detec-
tion Task

Thanks to the flexible expression of structured sequence in
OMNIPARSER, it is convenient for us to extend it to other
OCR-related tasks, such as hierarchical text detection, which
aims to group the text in the image into three levels, namely
word, line, and paragraph, based on spatial position and se-
mantic relationship. Previous methods [10] mainly achieved
hierarchical results by clustering based on similarity. In
our approach, we distinguish the text belonging to differ-
ent hierarchical intervals by simply inserting <LINE> and
<PARA> structural tags into the sequence of text center
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Figure 2. A comparative analysis of partial results obtained from OMNIPARSER and Donut on CORD. The first column depicts
the original image, while columns 2 and 3 illustrate our detection results and the corresponding formatted output, respectively.
Column 4 showcases the Donut’s formatted output. Notably, our model demonstrates superior performance in entity extraction.

points, as shown in Fig. 4. The experiments are mainly con- 5. More Visualizations
ducted on the HierText dataset [10], which consists of 8,281
training images, 1,724 validation images, and 1,634 test im-
ages. We train the model on the training set and evaluate
on the validation set. Partial visualization results are shown
in Fig. 5. Without any task-specific architectural designs, our
model achieves promising results, demonstrating its strong

generalization ability.

Fig. 6, Fig. 7, and Fig. 8 are more qualitative results of text
spotting, key information extraction, and table recognition,
respectively.
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Figure 3. Illustrative failure case of Donut in table recognition task. Red text means error predictions. For readability, we only
highlight two errors in this example. Due to the lack of point location information, Donut has an attention drift problem, resulting in
the prediction of repeated tokens and leading to a high probability of error accumulation in long-sequence scenarios. (The figure is

best viewed in color.)
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Figure 8. Visualization results of table recognition. We present point locations and a rendered table with an additional border for
readability based on the prediction sequence in each group. Blue points and red points denote the GT and predicted points respectively.
(The figure is best viewed in color.)
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