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Figure 1. Split process during class space exploration. In the initial
exploration of the target class space, some unknown and known
samples are divided into one class, and these samples need to be
separated through the splitting process. We select the first nif

distant subcluster-pairs based on the subcluster centers’ distance
ED(·, ·), which is integrated into the candidate set to be split.
Then, the Hasting ratio is calculated on the candidate set to de-
termine whether the split operation is accepted. Once the split op-
eration is accepted in the class, which includes both the unknown
and known samples, the unknown samples can be separated into
a novel unknown class, while the known samples remain in one
class. In this way, we can explore the accurate class space based
on the initial target class space. More importantly, although the
unknown samples are separated into a class, there still are sam-
ples belonging to different unknown classes. Thus, we also need
to explore more accurate class space through the split process in
the subsequent exploration process.

A. nif Selection Criteria

The criteria for selecting nif for merging or splitting are
as follows. The target class number K is initialized by the
known class number Kn, which is larger than 1 or 2, so
the K we obtain is also large. During the merging process,
the number of possibilities for all possible merging clus-
ters is [K(K − 1)/2]. Note that [·] is the floor function.
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Figure 2. Merge process during class space exploration, whose
candidate set obtaining and the determination of merging opera-
tion are similar to the one in the split process.

Based on the above, we set nif (merge) to half of all pos-
sibilities as [K(K − 1)/4], so the conditions for obtaining
candidate sets are not too loose. Then, by calculating the
Hasting ratio from the M-H framework, we infer whether
the (sub)clusters are truly merged, to make a more accurate
judgment on the target class space. The criteria of select-
ing nif (split) during the splitting process is the same as that
during the merging process, and nif (split) is set as [K/2].

B. Splitting and Merging Decision
Following [1], the Hasting ratio for splitting is computed on
the candidate master cluster to be split:

Hs
k =

α
∏

cs∈{ksub1,ksub2} Γ (ncs) fx
(
x{cs};λ

)
Γ (nk) fx

(
x{k};λ

) , (1)

where ksub1 and ksub2 are the two sub-clusters of k-th mas-
ter cluster, and cs represents the candidate cluster pairs to
be split. nk is the number of features belonging to the k-th
cluster and ncs is the number of features belonging to the
candidate cluster pairs to be split. Γ(·) is the Gamma func-
tion. fx(·;λ) is the marginal likelihood with λ representing
the posterior hyperparameters, whose calculating details are
following [2]. Thus, the split on the k-th master cluster can



be accepted if Hs
k > 1. Similarly, the Hasting ratio for

merging is computed on the candidate cluster to be merged:

Hm
k1k2

=
Γ
(
nk̂

)
fx

(
x{k̂};λ

)
α
∏

cm∈{k1,k2} Γ (ncm) fx
(
x{cm};λ

) , (2)

where k1 and k2 are the two clusters with the potential to be
merged, and cm represents the candidate cluster pairs to be
merged. k̂ represents the cluster after merging the clusters
k1 and k2. nk̂ is the number of features belonging to the
k̂-th cluster and ncm is the number of features belonging to
the candidate cluster pairs to be merged. Thus, the merge on
the k1-th and k2-th clusters can be accepted if Hm

k1k2
> 1.

Note that, when the merge clusters are finally determined
according to Eq. (2).

By calculating the Hasting ratio for splitting and merg-
ing, we can infer a more accurate target class number K,
which is beneficial to exploring the target class space. After
that, we optimize the unknown diffuser over the wider class
space, which is mentioned in our paper, by taking advantage
of the reliable known knowledge and cluster alignment on
the explored space.

In such an optimization based on the explored wider
class space, we first select the high-confidence known sam-
ples as the reliable known knowledge. Then, we hope to use
the hard pseudo-labels of the high-confidence known sam-
ples as supervision information, thereby leveraging them
for better knowledge transfer on the explored class space.
Specifically, for a known sample, we take the maximum
logit output by the classifier in the pre-trained model as
its confidence. And the known sample is considered as
the high-confidence known sample when it is greater than
a manually-set confidence threshold, whose hard pseudo-
label is represented by the one-hot paradigm yh

i (xh
i ∈ H).

Note that H is the set of the high-confidence known sam-
ples. Therefore, we can perform better knowledge trans-
fer on the explored class space by leveraging the reliable
known knowledge yh

i (xh
i ∈ H) obtained on the pre-trained

model. In addition, we also perform cluster alignment on
the explored class space, similar to Equation (2) in our paper
(
∑n

i=1 Lalg(x
t
i)), to complete the transfer on known sam-

ples further and achieve generalization on unknown sam-
ples. Finally, we leverage the supervision of the high-
confidence known sample labels and the constraint of the
cluster alignment, to jointly achieve superior knowledge
transfer on known classes and generalization on unknown

classes over the wider class space:
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(3)
where Lkt is the supervision of the high-confidence known
sample labels and Lalg is the constraint of the cluster align-
ment in our paper, to achieve superior knowledge transfer
on known classes and generalization on unknown classes.
z̃i represents the soft-distribution output by the main net-
work C on the explored class space. n1 and n2 represent
the number of known and unknown samples, respectively.

method SF bcycle
bus car mcycle

train truck
OS* UNK HOS

Cluster ✗ 73.7 79.5 66.0 83.5 84.2 0.9 65.0 44.0 52.0
SHOT ✓ 23.1 76.6 58.5 89.9 82.4 1.4 55.3 37.2 44.5
AaD ✓ 49.5 63.1 32.3 60.1 69.9 27.9 50.5 90.0 64.7

Ours(w/o s) ✓ 54.3 38.7 44.7 75.0 66.6 50.5 55.0 99.6 70.8
Ours(w/ s) ✓ 54.9 50.3 41.3 72.0 69.1 52.7 56.7 99.6 72.3

Table 1. Accuracy (%) on VisDA for OS-SFDA. OS* represents
the average accuracy of the per known class (bicycle, bus, car, mo-
torcycle, train, truck), while UNK is the unknown class accuracy.
HOS represents the harmonic mean between OS* and UNK.

Methods FINCH DenMune Ours(w/o s) Ours(w/ s)

ACC 33.0 25.0 58.0 58.3

K 4 15 12 12

Table 2. Comparing ACC(%) and the inferred target class number
K on VisDA with baselines.

C. Results Analysis on VisDA
Dataset VisDA. VisDA [3] is a large-scale dataset for the
synthetic-to-real domain adaptation task with two domains
and 12 classes. Its source domain has 152k synthetic im-
ages, while the target domain has 55k real-world images.
We choose 6 classes (bicycle, bus, car, motorcycle, train,
truck) as the known class, while the remaining 6 classes are
considered the unknown class.
Results Analysis. As shown in Tab. 1, our method (w/
s)’s accuracy (OS*, UNK, HOS) is much higher than the
traditional method SHOT [4]. Compared with the state-of-
the-art method AaD [5], our method (w/ s) achieves 6.2%,
9.6%, and 7.6% relative improvements over AaD for OS*,



UNK, and HOS, respectively. Furthermore, as shown in
Tab. 2, our method (w/ s) outperforms all no-parameter
clustering methods (FINCH, DenMune) for ACC and ob-
tains the more accurate inferred target class number K. The
above results demonstrate the superiority and effectiveness
of our method (w/ s). Meanwhile, our method (w/o s) out-
performs all compared methods, indicating that our method
(w/o s) is also efficient and superior without the supervision
of reliable known knowledge.

D. Time Complexity Analysis
Our Proposed Method. In addition to the pre-trained
model, we introduce an additional unknown diffuser to
solve the open-set source-free domain adaptation task (OS-
SFDA). Compared with the pre-trained model, we pay more
attention to the time complexity consumed by the unknown
diffuser, whose time complexity for each part and overall
are as follows:

Model Encoding Process. The time complexity of the
unknown diffuser to encode data is O(nbdK). nb and d rep-
resent the number of training target samples in each batch
and the dimension of the feature output by the feature ex-
tractor f in the pre-trained model, respectively. The value
of the target class number K changes dynamically with the
exploration process during training, which is initialized by
the known class number Kn.

Optimization in the target class space and target do-
main. For OS-SFDA, our method utilizes the unknown
diffuser to explore the target class space. The exploration
process is divided into two parts: cluster distribution op-
timization and class space exploration, the time complexity
of which are O(nbdK+nbK) and O(K2d+nbK), respec-
tively. Therefore, the total time complexity for optimiza-
tion (exploration) in the target class space is O(nbdK +
nbK + K2d) at each iteration. Then, based on the ex-
plored wider class space, we perform the optimization in
the target domain; that is, we realize the known knowl-
edge transfer and unknown generalize in the target domain
based on the wider class space. We obtain reliable known
knowledge through contrastive learning and its time com-
plexity can be represented as O(nbn

−
b Kn), where we select

n−
b negative samples (n−

b ≪ nb) and the time complex-
ity is approximately written as O(nbKn). After that, as
shown in Eq. (3), reliable known knowledge and cluster
alignment on the explored class space are used as super-
vision information, to perform known knowledge transfer
and unknown knowledge generalization, whose time com-
plexities are O(nhKn) and O(nbdK + nbK), respectively.
nh (nh<nb) is the number of the high-confidence known
samples. Therefore, the total time complexity in the opti-
mization process is O(nbdK + nbK + nbKn + nhKn).

Overall Time Complexity. Ultimately, the overall time
complexity of our proposed method is O(nbdK + nbK +

K2d+ nbKn + nhKn), which is approximately written as
O(nbdK + nbK +K2d+ nbKn).

Existing Methods. For the basic network architec-
ture, our method uses the same pre-trained model M with
the existing traditional method SHOT [4] and advanced
method AaD [5], which utilize the backbone of Resnet-50
on Office-Home and Office-31 while that of Resnet-101 on
VisDA. Except for the same pre-trained model, SHOT and
AaD utilize corresponding strategies to transfer knowledge
in the source-free and open-set setting, whose time com-
plexities are O(nbd) and O(nbd + n2

bKn), respectively.
Since the final K obtained by exploration and optimiza-
tion is about twice as large as Kn, the time complexity con-
sumed by our method can be regarded as the same magni-
tude order with the one consumed by the existing methods.

In summary, through the above time complexity analy-
sis, our method is consistent with SHOT and superior to
AaD for time complexity. It shows that our method does
not sacrifice time complexity to obtain a better adaptation
effect in OS-SFDA.
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