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Supplementary Material

1. More Analysis about PRDL

Ablation Study for fmin, fmax, and fave. In the main
paper, we have extensively analyzed the gradient of PRDL
in the case of fmin. In the supplementary material, we
leverage the image-fitting framework [1] to further elucidate
the roles of fmin, fmax and fave based on Part IoU bench-
mark. As depicted in Fig. 1, individually applying fmin,
fmax, or fave yields satisfactory results, and their combined
application leads to a significant improvement (63.61% in
average). It should be noted that all results in Fig. 1 do not
include Llmk, Lpho, and Lper.

More Gradient Analysis about PRDL. The above results
indicate that the adoption of various distance measures is
beneficial, which are also demonstrated in Fig. 2. We select
a subset of vn for gradient analysis. The effect of fmax is
similar to that of fmin, with the only difference being the
selection of points. fave influences the entire V p

2d(α). As
indicated by the green box in Fig. 2(b) and Fig. 2(c), the gra-
dient of F = {fmin, fmax, fave} is the most effective as it
can correct some errors that arise when fave acts alone in
certain scenarios. Aqua-colored arrows are used to indicate
the direction of the gradient, with the length serving merely
as an illustration. Reshape Γ∗

p (R|A|×|F | → RH×W×|F |)
to visualize its three channels (fmin, fmax, fave) separately
in Fig. 2(d), Fig. 2(e), and Fig. 2(f). Compared to the re-
gression target of the renderer-based Loss, Γ∗

p in PRDL is
more informative and more conducive for fitting.

2. More Implementation Details

Transforming Segmentation to 2D Points. Two widely
recognized definitions of 2D face segmentation regions are
Helen [7] or iBugMask [10] and CelebAMask-HQ [8],
which divide the face and related areas into 11 parts and
19 parts, respectively. As shown in Fig. 3, we employ the
state-of-the-art method DML-CSR [15] for face segmenta-
tion. The results of the above two segmentation definitions
are shown in Fig. 3(b) and Fig. 3(c), respectively. Through
practical experimentation, we find that the 11-part method
yields more accurate results. However, the segmentation of
the ear regions from this method does not align well with
the face model and needs to be removed. Consequently, we
remove the corresponding ear regions from Fig. 3(b) based
on Fig. 3(c), resulting in Fig. 3(d). Typically, Fig. 3(d) con-
tains noise as indicated by the white dashed circle. To han-
dle this, we identify the noise [2] and eliminate these iso-

Figure 1. Quantitative comparison on Part IoU benchmark for
fmin, fmax, and fave.

Figure 2. More analysis about PRDL when p = right eyebrow.
(a) Visualization of −∇Ei,m,n when F = {fmax}. (b) and (c)
depict the visualizations of−∇Lprdl when F = {fave} and F =
{fmin, fmax, fave}, respectively. (d), (e), and (f) visualize Γ∗

p in
three channels (fmin, fmax, and fave).

lated regions, yielding the outcome depicted in Fig. 3(e).
To mitigate the impact of the region above the eyebrows,
which is often obscured by hair, we transformed the eye-
brows into 2D coordinates, identified their tangents (repre-
sented by white dashed lines in Fig. 3(e)), and dynamically
removed the area above the eyebrows. The final result is
presented in Fig. 3(f).

3D Mesh Part Annotation. As shown in the Fig. 4, the ob-
jective of {Indp} is to partition the specific face model to
obtain {V p

2d(α)} that are consistent with the region seman-
tics of 2D segmentation. When i ∈ Indp, it means that the
i-th vertex in the mesh belongs to part p.

Our 2D to 3D part mesh annotation method is described
in Algorithm 1 with the following settings: Render(·)



Figure 3. Remove the ear, filter noise and dynamically remove the
forehead region according to the position of the eyebrows.

Figure 4. We provide 3D Mesh part annotations for the BFM [11]
and FaceVerse [14] face models, which are well-aligned with the
widely recognized 2D face segmentation definitions.

renders an image by employing texture on the mesh, and
Seg(·) is responsible for segmenting the rendered result.
Under the constraint of topological consistency within the
same face model, V3d

all contains 3D face data with dis-
tinct poses and expressions, while Texall comprises di-
verse texture data. P = {left eye, right eye, left eyebrow,
right eyebrow, up lip,down lip, nose, skin}. In practice, if
the segmentation resolution of the face parsing method is
large enough, k could be equal to 1 in Algorithm 1. The few
errant vertex indices in {Indp} should be manually correct.
The proposed algorithm 1 can also be applied to 2D to 3D
landmark marching. To ensure consistency with the ground
truth Cp, the upper forehead region above the eyebrows is
dynamically excluded, and the points obstructed by hair are
also removed, as illustrated in Fig. 5.

Test Images for Part IoU. Multi-view Emotional Audio-
visual Dataset (MEAD) [13] is a talking-face dataset cor-
pus featuring 60 actors talking with 8 different emotions
at three different intensity levels, which can provide high-
quality details of facial expressions. We select 10 identities
from MEAD, containing diversity across genders and eth-
nicity. We randomly select 50 different frontal images from

Figure 5. Remove the forehead region and the points obstructed
by hair to ensure consistency with the ground truth {Cp}.

Algorithm 1: Identify part indices {Indp} of the mesh.

Input: Render(·), Seg(·), V all
3d ,Texall, P

Init: Indp = ∅, k (k-nearest-neighbor)
1 for ∀ V3d ∈ V3d

all and ∀ Tex ∈ Texall do
// Get the segmentation,

2 Iseg = Seg(Render(V3d, T ex)),
// Transform Iseg to coordinates,

3 {Cp|p ∈ P } ← Iseg ,
// Project V3d to the image plane,

4 V2d = Project(V3d)
5 for p ∈ P do
6 for c ∈ Cp do

// c is a 2D coordinate,
7 Find the first k vertices in V2d that are closest

to c, and these k vertices should be visible,
append their corresponding indices to
Indp.

8 end
9 end

10 end
Output: {Indp}

each identity to constitute the Part IoU testing set. Fig. 6
shows a subset of these images.

3. More Comparison with the Other Methods

Fig. 9 depicts a more comparison between our results and
the other state-of-the-art methods, i.e. PRNet [4], MGCNet
[12], Deep3D [3], 3DDFA-V2 [6], HRN [9], and DECA
[5]. Leveraging the advancements brought by PRDL, our
method excel in capturing extreme facial expressions. Part
IoU measures the overlap performance between each part of
the reconstruction and the ground truth. The visualization
of Part IoU for every method can be found in Fig. 7, which
shows that PRDL enhances the alignment of reconstructed
facial features with the original image.

4. More Results about Synthetic Data

Fig. 10 illustrates more results about our synthetic emo-
tional expression dataset. The dataset currently consists of
over 200K images, including synthetic expressions such as
closed-eye, open-mouth, and frown. This dataset will be
publicly available to facilitate the related research.



Figure 6. A subset of test images for Part IoU.

Figure 7. Comparison on Part IoU. The IoU value and visual-
izations for each reconstructed part are annotated, and the bottom
right corner of each image is the corresponding 3D reconstruction.

5. Limitations

We summarize two limitations of our approach. Firstly,
while Fig. 9 has demonstrated the excellent performance of
our method on extreme facial expressions, it is constrained
by the limited linear space of the 3DMM, resulting in some
imperfections in reconstructing particularly challenging ex-
pressions. Secondly, although our method can handle oc-
cluded faces, it may struggle with severe occlusions, as il-
lustrated in Fig. 8. In the future, we will extend our method
to fine-grained face reconstruction and multi-view face re-
construction to address these limitations.

Figure 8. Limitations of our method. In cases of extremely chal-
lenging facial expressions or heavily occluded faces, our recon-
structions may exhibit some minor errors.
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Figure 9. More comparison with the other methods. From left to right: Input image, PRNet [4], MGCNet [12], Deep3D [3], 3DDFA-V2
[6], HRN [9], DECA [5], and Ours.
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Figure 10. Examples of our synthetic face dataset.
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