4D-DRESS: A 4D Dataset of
Real-World Human Clothing With Semantic Annotations
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Figure 1. Example of 24 rendered views. We render 24 views to
ensure the visibility of each scan vertex and consider the compu-
tational cost of human parsing.

1. Implementation Details
1.1. Multi-view Parsing

Multi-view rendering. For each frame & €
{1,..., Nframe}, we render twelve horizontal, six up-
per, and six lower images I;ng i that are uniformly
distributed on a sphere by rasterizing the textured scan
with Pytorch3D [13], where n € {1,..., Nyjew = 24}.
Each scan is centralized according to its bounding box
center and then placed at the camera sphere center. The
rendered images have a resolution of 512 x 512. Examples
of 24-view rendered images are shown in Fig. 1.

4D-DRESS Graphonomy (LIP)

(-1) other background

(0) skin tor’so-skin, face, glove.
left-arm, right-arm, left-leg, right-leg

(1) hair hat, hair, sunglasses

(2) shoe socks, left-shoe, right-shoe

(3) upper upper-clothing, dress, scarf

(4) lower pant, skirt

(5) outer coat

Table 1. Label mapping between 4D-DRESS and LIP dataset.
We define 6 label categories based on LIP dataset.

Human image parser (PAR). We apply the pre-trained
Graphonomy [7] to each rendered image I, g, .1 and save
the label results as a new image Ip,,n, k. Concretely, we
manually classify the 20 classes of Graphonomy labels into
6 classes that are used in our dataset: skin (0), hair(1),
shoes(2), upper(3), lower(4), and outer(5) clothes. The cor-
responding labels between Graphonomy (LIP) and ours are
shown in Tab. 1. Specifically, we map the background la-
bel from Graphonomy to our setting with a label value -1,
and the color code of white. These background labels will
return 0 in the vote function fpq . (p, ).

Optical flow transfer (OPT). To establish connections
with previous frames, we project previous frame vertex la-
bels to multi-view labels Ijup . 1—1 using the same ren-
dering cameras and rasterizer from Pytorch3D. Then, we
warp these previous multi-view labels to the current frame
Iopt,m,i using the optical flow vectors predicted by the
RAFT [16] model. The vertex labels at the first frame do not
involve this process thanks to our first-frame initialization
(see Sec. 1.3). Concretely, each pixel label with location
p within Ij,yp , x—1 Will be warped to a new pixel location
p + v at the current frame, through the optical flow vector
v = RAFT (Limg.n k-1, Limgmn.k, D). The new labels at the
current frame are determined by voting. If there is no cor-
responding label found in the previous frame, the new label
will be set to -1.

Segmentation masks and scores (SAM). We use Seg-
ment Anything Model [9] to segment each rendered im-
age limg,n into a group of masks M, ,, without any ex-
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Figure 2. Example of SAM predictions. The input image is the first view (upper-left) of Fig. 1. We filter out the segmentation masks that
contain background, full body, and only small regions (marked as red).
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Figure 3. Example of manual rectification. An annotator selects
aregion in the rendered images and gives a correct label. The label
is projected to 3D and used for correcting the 3D vertices through
a second round of graph cut optimization.

tra prompts, where m € {1, ..., My,qsk,n }- Then we com-
pute the score function S(I, M,, ) within each mask for
each label by fusing the votes from the image parser and
optical flow, normalized by the area of the mask. Fig. 2
depicts the predicted segmentation masks from a rendered
image. A pixel p within the rendered image I;,, 4, ,, may be-
long to multiple segmentation masks. In this case, the SAM
vote function fsqm n(p,!) is calculated by summing all the
scores of masks that contain this pixel.

1.2. Graph Cut Optimization

The energy Eq. (5) in the main paper is optimized through
the graph cut algorithm (alpha-expansion). The vertex-wise
unary energy is normalized among all labels and then added
to the edge-wise binary energy. The weights are empirically
setas A\, = 0.5, A, = 0.5, A\ppo = 1.5, Ag = 1,and s = 1.

1.3. Manual Rectification Process

Manual rectification on segmentation masks. In our
dataset, each scan mesh has around 80k vertices. Manu-
ally annotating their vertex labels on the 3D scans is very
expensive and time-consuming. Thus, we introduce a man-
ual rectification process within the 2D image space. Af-
ter the first graph cut optimization, we render vertex labels
to multi-view images, from which we let an annotator cor-
rect labels with the segmentation masks and a painting tool.
More specifically, the annotator is asked to identify an in-
correctly labeled region by checking the multi-view images
and labels. Once an incorrect labeling is found, the annota-
tor will look for its corresponding segmentation masks for
label correction. If such a mask does not exist, the anno-
tator will manually paint the region using a painting tool.
Finally, the images with rectified labels are projected to
3D vertices and are formulated as the manual vote func-
tion fian,n(p,1). The energy Eyuqn ., term will be added
to the second round of graph cut optimization, with a large
weight W, = 10. We note that for each 150-frame 4D
sequence, the rectification process takes about 30 minutes
on a desktop with an RTX 2080Ti GPU whereas the human
parsing and the graph cut optimization take two and one
hour, respectively. An example of our rectification process
is shown in Fig. 3.

First-frame initialization of vertex labels. To ensure a
good label initialization, the motion sequences always start
from the A pose, which is easier for human parsing and
pose registration. We obtain the first-frame vertex labels
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Figure 4. Ablation study and baseline comparison on the BEDLAM dataset. We conducted ablative experiments on the synthetic

BEDLAM dataset where ground-truth semantic labels are available.

using the edge-wise binary energy and the multi-view unary
energy calculated only from the image parser (E,,,) and
manual rectifications (F,,,4n).

2. Additional Parsing Experiments
2.1. 4D Parsing on Synthetic Datasets

We conducted controlled 4D parsing experiments on two
synthetic datasets, CLOTH4D [17] and BEDLAM [3],
where the cloth meshes are simulated from cloth templates
on top of the parameterized body models. Since within
these synthetic datasets, some inner body and cloth vertices
are always invisible from the outside, we report our label-
ing accuracy only on the vertices that are visible from our
24 views of rendered images.

Baseline comparison. We first compare our 4D human
parsing method with a template-based baseline method [12]
that utilizes a semantic SMPL+D template to first track the
clothed human shape, and then project the template labels
to neighboring scan vertices. Since ClothCap [12] didn’t
release their 4D parsing code, we implemented their pars-
ing method following their descriptions. We first register
the SMPL+D model to all frames. Then we initialize the
first frame template label using the nearby scan vertex la-
bels obtained through our first-frame initialization process.
At each frame, we update the template labels using the
body prior, previous frame prior, and the Gaussian Mixture

Model trained from the vertex colors of each labeled cate-
gory. Finally, the scan vertex labels are assigned from the
nearest template label. The quantitative parsing results from
this baseline method are shown in the main paper. Here, we
show more qualitative results in Fig. 4.

The main issue of this template-based baseline method
is fitting the SMPL+D template to loose human outfits. The
spatial mismatch between template and loose garments gen-
erates incorrect labels, especially in the open area of the
jackets. Besides this, precisely updating the template labels
using the Gaussian mixture model of labeled vertex colors
is also difficult, especially in front of garments that have
similar colors. The limited template resolution also results
in noisy boundary labels at the higher-resolution clothed
human meshes. The parsing accuracy from this baseline
method is below 90% for all synthetic outfits.

Ablation studies. We then compare our 4D human pars-
ing method (without manual rectifications) with several
ablations of the multi-view parsing inputs (PAR Only,
PAR+OPT, PAR+OPT+SAM), as shown in Fig. 4. Similar
to Fig. 3 in the main paper, we observed similar qualitative
results on the synthetic datasets.

2.2. 4D Parsing on Other Datasets

Our 4D human parsing method takes the input as scan mesh
sequences and multi-view videos and thus can be applied to
the existing real-world 4D human datasets, such as BUFF,
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Figure 5. Data provided in the 4D-DRESS dataset. We provide high-quality 4D textured scans. For each scan, we annotate vertex-level
semantic labels, thereby obtaining the corresponding garment meshes and fitted SMPL(-X) body meshes.

BUFF X-Humans
Figure 6. 4D human parsing on other real-world datasets.

ActorsHQ

2 Belt 3 &  Sock I‘~---.'
Figure 7. 4D human parsing with new labels.

X-Humans, and ActorsHQ, as shown in Fig. 6.

2.3. 4D Parsing with New Labels

The six classes in our 4D-DRESS are strategically defined
to ensure a consistent benchmark evaluation for clothing
simulation and reconstruction. We showcase the generaliza-
tion ability of our parsing method with new labels in Fig. 7,
by effectively distinguishing a belt from pants and socks
from shoes. Initiated during the first-frame initialization,
these new labels can integrate into the 4D parsing pipeline.
However, refining labels for these smaller clothes and ob-
jects may entail additional manual efforts for rectification.

Figure 8. Vertex-level semantic annotations. Our dataset con-
tained precise vertex-level semantic labels of clothing categories.

3. Additional Dataset Description
3.1. Data Capturing Steup

We captured our dataset with a volumetric capture sys-
tem [5] equipped with 106 synchronized cameras (53 RGB
and 53 IR cameras). The sequences are filmed at 12 MP,
30 FPS, and within an effective capture volume of 2.8 m in
diameter and 3 m in height. Each frame consists of a mesh
with 80k faces and a texture map.

3.2. Dataset Contents

Our 4D-DRESS dataset provides the following data, exam-

ples are shown in Fig. 5:

¢ 4D textures scans. High-quality 4D textured scans of 32
subjects, 64 human outfits (32 Inner and 32 Outer), with
520 motion sequences and 78k frames in total.

* Vertex-level annotations. We offer accurate vertex-level
annotations through our 4D human parsing pipeline. An
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Figure 9. Visualization of 4D-DRESS outfits distance. The
mean distance distribution from garment outfits to SMPL bodies.
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Figure 10. Visualization of 4D-DRESS outfits distance. The
mean distance distribution from garment meshes to SMPL bodies.

example of our label quality is shown in Fig. 8. Using
these labels, we also provide multi-view images with se-
mantic labels in 2D.

¢ Parametric body models. We register precise SMPL and
SMPL-X body models for each frame.

* Garment meshes. We extract 3D garment meshes based
on the vertex labels.

3.3. Clothing Distribution

We compute the mean distances from the outfits to the reg-
istered SMPL body surfaces. The inner and outer outfits
exhibit distance ranges of up to 7.12 cm and 14.76 cm, re-
spectively, over all frames. The distribution of the distance
on the SMPL body is shown in Fig. 9. In the 10% most chal-
lenging frames that have a larger Chamfer distance between
scan mesh and SMPL mesh, the distance range increases to
20.09 cm for outer outfits. We further visualize the mean
distances of each garment category, as shown in Fig. 10.
The average Chamfer distance between the clothed human
scans and SMPL body meshes are 3.30 cm and 5.28 cm for
the inner and outer outfits in our 4D-DRESS dataset, and
2.21 cm in the X-Humans dataset [15].

4. Additional Evaluation Benchmarks
4.1. Clothing Simulation

4D-Dress provides diverse garments and challenging hu-
man pose sequences, which serves as a great asset for fu-
ture research in clothing simulation. Unlike the synthesized
garment templates with smooth surfaces and simple topolo-
gies, we provide templates extracted from scans, with re-
alistic wrinkles and complex structures. Using these tem-
plates, we evaluated the performance of recent unsupervised
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Figure 11. Garment templates used for clothing simulation. We
extract four types of Garment templates from T-pose scans.

cloth simulators, including PBNS [1], Neural Cloth Simula-
tor (NCS) [2] and HOOD [8], and a baseline method, linear
blend-skinning. We quantitatively and qualitatively com-
pared the generated garments with our scanned garments.
We also demonstrated the potential of HOOD by simply op-
timizing the material parameters, which again confirmed the
value of our dataset. In the following sections, we elaborate
on each step of our experiments.

4.2. Template Extraction

Current clothing simulation algorithms rely on a predefined
garment template, deforming it to generate realistic simula-
tions under various poses. They typically utilized synthe-
sized garment templates, with unnaturally smooth surfaces
and basic topologies. In our work, we provided templates
directly extracted from real-world scans, offering a more re-
alistic foundation for deformation.

Firstly, we select from pose sequences the frames closest
to the canonical pose, in other words, “T-pose”. We also
make sure that the body in this frame is static and garments
are in rest status. Then we apply inverse LBS to convert the
scans into exact canonical pose. After extracting garment
meshes from the unposed scans, we made some manual ef-
forts to recover the garment shape in Blender [6]. Specif-
ically, we erased unwanted faces, solved penetrations be-
tween clothing and body, and smoothed rigid wrinkles and
coarse boundaries. Synthesized templates used by current
simulators usually have 4-5k vertices. We observed in ex-
periments that too many vertices in the template are com-
putationally expensive for simulation and may erode per-
formance. Therefore, we downsampled each template to
30-50%, which now has 3-8k vertices in total depending on
each garment’s surface area, while keeping them in their
original shapes. To use lower garments in simulators, like
pants and lower skirts, pinned vertices are compulsory for
them to stay on the body. We extract the loop around the
waist as pinned vertices and provide their indexes.



4.3. Evaluation Details

In the clothing simulation benchmark, we compared four
different clothing simulators: LBS, PBNS [1], NCS [2], and
HOOD [8]. The training and evaluation of each method
were conducted using the SMPLX model, which provides
more details in visualization. The final evaluation is done
on four types of garments(Upper, Outer, Dress, and Lower),
with each having 2 garments and 6 sequences in total. For
qualitative evaluation, we employed Chamfer distance and
stretching energy, scaling vertex positions by a factor of 100
to use centimeters as the unit.

The Chamfer distance, shown in equation 1, is computed
by summing the squared distances between nearest neigh-
bor correspondences of two-point clouds. We denote the
sampled points on simulation and ground-truth meshes as
X and Y, respectively, with N, representing the amount of
sampled points, set to 100,000 in our experiment.

1 _ , 1 _ ,
dop = 3 > minlle—yli+ 5 > minfe—yl3 (1)
rzeX yey

The stretching energy, widely used in mass-spring-based
simulators, is computed as equation 2, where N, is the total
number of edges, e; and é; are the lengths of the edge ¢ in
the current frame and the template respectively.

1
Bor = 5 Z lle; — &2 )

We provide more details on implementing each method:
LBS blends joint transforms with skinning-weights. For
each garment template, we find the nearest body node on
the canonical SMPLX human, and get the skinning weights
on this point. Then, we follow the same forward LBS pro-
cess in SMPLX to get deformed template meshes.

PBNS and NCS, both are deformation-based methods,
predict vertex-wise deformation on the template and em-
ploy LBS to transform the deformed garment into desired
poses. Given their ’One model for one garment” nature, we
trained each garment from scratch. We also used identical
AMASS sequences mentioned in the NCS paper to ensure
fairness. As both PBNS and NCS developed using SMPL,
we made slight adjustments to the data-loading pipeline to
ensure their compatibility with SMPLX. And we assigned
zero poses to joints that are exclusive in SMPLX.

Meanwhile, we also kept the same training settings used
in their original papers. For PBNS, default parameters
were used, and each garment underwent training for 20-
50 epochs to ensure convergence. For NCS, a batch size
of 2048 was employed across all training instances, as sug-
gested in their paper. In the case of tight garments, default
parameters were maintained with a temporal window size
of 0.5 and 10 iterations for blend weights smoothing. In

the case of loose garments like outerwear and dresses, we
made slight parameter adjustments for stable training, typi-
cally using a temporal window size of 0.75 and 1, with 50
iterations for blend weights smoothing, as suggested by the
author in a GitHub issue.

HOOD, as a simulation-based method, predicts physi-
cally realistic fabric dynamics and is agnostic to garment
topology. Hence, we directly used a pre-trained pub-
licly available model to evaluate our garments. Unlike the
deformation-based methods, which convert the template in
canonical pose to any pose instantly, HOOD predicts gar-
ment motion frame by frame. Therefore, to apply our
canonical template for simulating each sequence, we have
to convert the template into the pose of the first frame. In the
HOOD paper, they used LBS to convert templates, which
works for tight synthesized garments. However, for our
real-world garments, it usually results in large stretching
on mesh, especially around joint areas. Therefore, alter-
natively, we insert extra frames from the canonical pose to
the first frame and simulate the prolonged sequence to get a
natural transform from the canonical pose. The first poses
for all sequences in our dataset are in A-pose. Generally,
we insert 30 frames to transfer from canonical to A-pose,
which makes it slow enough for the garment to stay in rest
status with minimum dynamics.

4.4. HOOD*: Material Optimization

HOOD provides 4 local material parameters for each vertex,
including i+ and A evaluating the ability of stretching and
area preservation, mass m computed from the fabric den-
sity, and the bending coefficient kpenqing penalizing folding
and wrinkles. For each edge, there are three material pa-
rameters, including p, A, and Kpepging. Assuming we have
v vertices, e edges, and coarse edges in total, we define the
material parameters as M € R4v+3¢,

In the fine-tuning process, we freeze the pre-trained
HOOD model H and only update material parameters M.
Using all 6 sequences of each garment for training, we feed
them into model f to get simulated outputs. Then, with
Ground Truth garment mesh GG, we compute Chamfer dis-
tance and stretching energy, as described in equation 3.

L= ECD(f(Ma ,H)’ G) + w£Estr(f(M’ H)’ G) (3)

We used the stretching energy from HOOD and set w as
1 in our experiments. Chamfer distance Lo p is described
in equation 4, measuring the average distance between sim-
ulation and ground-truth garment. We use Vi, (x € [s, g])
to represent the simulated and ground truth vertices and use
N, as the total number of vertices.
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Figure 12. Additional qualitative results for clothing simulation. Left are templates used for simulations. Right are simulations and
ground-truth scans. HOOD presents more dynamic while getting overly stretched. HOOD* matches well with ground truth.

| Inner | Outer
Method | mAcc.T mloU?T | mAcc.t mloU?T
SCHP [10] 0.908 0.832 0.863 0.768
CDGNet [11] 0.922 0.853 0.887 0.790

Graphonomy [7] 0.968 0.859 0.915 0.810

Table 2. Image-based human parsing. Results of image-based
human parsers on 4D-DRESS.

1 . 2 1 . 2
Lep =5 D minlle —y|* + N, > minfle —y]
zeVy yeVy
4)

For each garment, we trained with Adam Optimizer with
a learning rate of Se-4. And it usually takes 50 epochs to
converge. Generally, HOOD* gets a much lower distance
compared to ground truth mesh quantitatively, and also per-
forms more natural fabric dynamics qualitatively.

4.5. Clothed Human Parsing

We design a benchmark for the image-based human parser.
Concretely, we project each scan frame’s vertex labels to the
multi-view captured images using corresponding camera
parameters and rasterizer, which provide the ground-truth
pixel labels for evaluating the image-based human parsing
methods: SCHP [10], CDGNet [11], and Graphonomy [7].
In Tab. 2, we report the mean Pixel Accuracy (mAcc.) and
mean Intersection over Union (mIOU) between the pre-
diction and the ground-truth labels. We conducted our hu-
man image parsing experiments on one subset of our 4D-
DRESS dataset, which contains 128 sequences of 64 outfits
(2 sequences for each of the inner and outer outfits). The
qualitative parsing results are shown in Fig. 13.

X X X X
KX XX

CDGNet SCHP

GT Graphonomy

11141

Input GT Graphonomy CDGNet SCHP

Figure 13. Human parsing comparison. We use the ground-truth
semantic labels to evaluate state-of-the-art human parsing models.

These methods generally failed to predict correct clothing labels
from different view angles.

4.6. Human Representation Learning

We design a new benchmark for evaluating the human rep-
resentation learning task. Unlike physics-based methods,
this line of work directly takes 3D human scans as train-
ing input and obtains an animation-ready human avatar. We
follow the split strategy mentioned before and evaluate prior
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Figure 14. Human representation learning. Qualitative results of the novel pose synthesis of state-of-the-art human representation
learning approaches together with the GT of 4D-DRESS. All Baseline methods fail to learn the large non-rigid surface deformations and

are bounded by the skeletal deformations.

‘ Inner ‘ Outer
Method | €Dy NCt  IoUt | €Dy NCt  IoUt
SCANimate [14] | 0.965 0.854 0918 | 1.237 0.828 0912
SNARF [4] 1.158  0.843 0907 | 1.248 0.827 0.930
X-Avatar [15] 1.008  0.861 0954 | 1.177 0.841 0.946

Table 3. Human representation learning. Results of human rep-
resentation learning approaches on 4D-DRESS.

works, SCANimate [14], SNARF [4], X-Avatar [15] on the
novel-pose synthesis. Fig. 14 shows that state-of-the-art
human representation learning approaches cannot correctly
learn the large non-rigid surface deformations (e.g., folded
skirt) due to the strong skeletal dependency and the lack of
modeling for temporal dynamics. This effect can also be
reflected in Tab. 3 quantitatively where all baseline meth-
ods produce higher errors on the split of more challenging
garments (outer outfits).
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