A-Teacher: Asymmetric Network for 3D Semi-Supervised Object Detection

Supplementary Material

A. Overview

We first present the outline of this supplementary material.
§B elaborates the implementation details of loss functions.
§C offers the additional analyses of A-Teacher on quality
and efficiency. §D indicates the potential of the proposed
attention-based refinement model to apply to offline 3D ob-
ject detection. §E contains the detailed data augmentation.

B. Details of Loss Function

In this section, we elaborate on the details of the loss func-
tions in manuscript Sec. 3.4, including each component of
the proposed attention-based refinement model.
Propagation-based Box Aggregation. For each candi-
date box, we first find its corresponding ground truth
based on the intersection over union (IOU). As for the
matched objects, we regard them as foreground and as-
sign their sgt = 1. After that, we exploit the ground
truth boxes denoted by superscript gt and candidate boxes
denoted by superscript ¢ to calculate the offset Ay =
{Ax, Ay, A, Ay Ay, Ay, Ag} follow [3], specifically,
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Conversely, for the unmatched objects, we regard them as
background and assign their sgt = (. After that, we merge
the background and foreground to obtain the final label s
for supervising the confidence. Eventually, we calculate the
offset loss £7,, and the confidence loss L7, as Eq. 13 in
manuscript Sec. 3.4. As for the utilization of the predicted
offset A, we use the reverse version of Eq. 1 to acquire the
refined pseudo labels.

Dreaming-based Box Aggregation. First, we calcu-
late the distance matrix D based on the categories and L1
norm between the predicted boxes and the ground truth.
Then, conduct the Hungarian algorithm [2] to realize the
assignment o* between the predicted boxes and the ground
truth. After that, we obtain the loss Lq1,, analogously to
DETR3D [6]. Specifically, for matched objects, we calcu-
late the class confidence loss for categories and regression
loss for boxes. As for the unmatched objects, we only uti-
lize the confidence loss.

Spatio-Temporal Deformable Aggregation. The L,
is composed by two parts, including the heatmap loss Ly,
and the regression loss Lc,, which is borrowed from Cen-
terPoint [7]. The Ly, is the focal loss [1] with K -channel,

one channel for each of K classes. Specifically, we first
convert the boxes in 3D space into grid space which is based
on the resolution of the center-based detection head. Then,
we generate the ground truth heatmap through the Gaussian
function with boxes center and corresponding radius. Af-
ter that, we transform the center of ground truth boxes into
grid space. Eventually, we employ the L; norm to obtain
the final loss, respectively.
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Figure 1. BEV IoU distribution in each category for pseudo labels

generated by vanilla teacher and that after refinement model.

The curves are smoothed for clear visualization.

C. Additional Analyses

Analysis about IoU distribution. The experiments in in
manuscript Sec. 4.4 (Quality of Pseudo Labels) analyze the
precision of pseudo labels, however, no specific analysis of
how accurate it is. Therefore, as is shown in Fig 1, we draw
the distribution in each category for pseudo labels directly
generated by the vanilla teacher and after the refinement
model. It is obvious that the IoU distribution after the re-
finement model is higher in each category, which indicates
the pseudo labels generated by our refinement model are
more precise. Above all, this experiment reveals the neces-
sity of the utilization of multi-frame information from both
the past and future to generate pseudo labels.

Precision based on remaining percentages. Since we can
choose different thresholds for different models, solely re-
ferring to the analysis of the precision based on the thresh-
olds may not be sufficient. Therefore, we also visualize
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Figure 2. Precision of pseudo labels based on percentages.
We compare the quality of pseudo labels generated by the vanilla
teacher (dashed lines) and that after the refinement model (solid
lines) under different remaining percentages applied to classifi-
cation scores. The shadow region indicates the improvements
brought by our refinement model.

the precision of pseudo labels based on different remaining
percentages. It is self-evident to observe in Fig. 2 that the
pseudo labels generated by the refinement model are more
precise than those generated by the vanilla teacher. Com-
bined with Fig. 4 in manuscript Sec. 4.4, the superiority of
the proposed attention-based refinement model is proved.

Name ‘ Train (V100/h) ‘ Infer (V100/h)
Vanila Teacher (1f) - 17.5
Refine Model (3f) - 6.5
Threshold 60.3 -
HSSDA 84.6 -
A-Teacher 71.1 -

Table 1. Speed comparison in solely inference and integrated in
semi-supervised framework. Time cost of one epoch on entire
Waymo dataset with 1 x NVIDIA Tesla V100 GPU.

Efficient experiment of A-Teacher. Previous experiments
exhibit the effectiveness of A-Teacher, we also want to
prove the efficiency of our method, all of the speed tests
conducted on V100 GPU. First, we compared the time con-
sumption of the attention-based refinement model and the
vanilla teacher. As is shown in Tab.1, our refinement model
is extremely efficient, only needing 37% time of the vanilla
teacher even using the three frames as input. To evaluate
the practical efficiency, we record the time consumption
when training, compared with vanilla teacher, our approach
used an additional 9.8 hours but got a remarkable improve-
ment. Besides, compared with HSSDA [4] which exploits
test-time-augmentation (TTA), our approach can save 13.5
hours (15.9%) and achieve better performance.

D. More Experiments

Extension to offline detection. A-Teacher is capable of ex-
tending to offline 3D detection tasks. As is shown in Tab. 2,

Veh. (mAP) | Ped. (mAP) | Cyc. (mAP)
L1 L2 L1 L2 L1 L2

PV(1f) 677 594 | 664 576 | 435 419
PV(3f-offline) | 67.8 59.6 | 68.8 60.0 | 49.7 48.0
PV(1f+Re3f) | 69.2 60.8 | 70.0 61.1 | 569 549

Model

Table 2. Implementation on offline object detection. Compared
with vanilla offline method (point clouds concatenation).

we conduct experiments on 5% (40 sequences) of Waymo
dataset [5], compared with directly concatenating the multi-
frame point clouds in the past and future, our attention-
based refinement model can substantially promote the de-
tection performance, especially for Pedestrian and Cyclist,
which demonstrates the great potential of our approach.

E. Data Augmentation for Refinement Model

In order to exhaustively utilize the labeled data for training,
we exploit a series of meticulously designed data augmenta-
tion approaches. Our augmentation towards the input point
clouds and candidate boxes respectively.

Random box-based perturbation and dropout. Since the
vanilla teacher that generates the candidate boxes has al-
ready been trained on the labeled data. Thus, the candidate
boxes generated by the vanilla teacher may be overfitting
for labeled data. Therefore, to enhance the robustness of
the refinement model and ameliorate the overfitting issue,
the predicted boxes are added with slight perturbation and
randomly discarded. Meanwhile, to increase the diversity
of the original point clouds, we randomly drop parts of the
point clouds in the candidate boxes.

Multi-stage candidate boxes injection. Since the vanilla
teacher has different learning levels for different scenarios.
Therefore, the proposed refinement model should handle
inputs with inconsistent deviations. In order to further in-
crease the diversity of training data, we utilize the candidate
boxes generated by the vanilla teacher in different training
stages to enrich the bias situations of candidate boxes.
Sequence GT boxes and point clouds paste. The class
imbalance is considerable in the Waymo dataset, since the
number of Cyclist is the minority compared with Vehicle
and Pedestrian. Therefore, it is critical to conduct object-
based paste to alleviate class imbalance. In the practical
implementation, we paste the point sequences of the identi-
cal objects to the original point clouds, meanwhile, remov-
ing the points at the original location. Moreover, as for the
candidate boxes, we implement augmentations that mimic
the above-mentioned box-based perturbation and dropout.
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