
APISR: Anime Production Inspired Real-World Anime Super-Resolution

Supplementary Material

In this supplementary material, Sec. A first presents
more statistics and details of our proposed anime image
SR training dataset. Then, Sec. B shows details about our
implementations in super-resolution (SR) network train-
ing. Specifically, Sec. B.1 presents the image SR net-
work we used in our training. Sec. B.2 presents details
of post-processing techniques we use on the pseudo-GT
preparation for hand-drawn line enhancement. Sec. B.3
presents figures and details of the ResNet50 [10] percep-
tual loss for our proposed balanced twin perceptual loss.
Sec. B.4 provides the hyperparameter setting for our pro-
posed prediction-oriented compression and shuffled resize
module in the degradation model. Finally, Sec. C provides
more visual results of comparisons among SOTA methods
and ablation studies.

A. API Dataset Details

Our Anime Production-oriented Image (API) SR dataset
contains 3,740 high-quality and informative images. This
quantity is roughly the same quantity as the previous pho-
torealistic SR training dataset size [26, 29], which includes
DIV2K [1], Flickr2K [20], and OutdoorSceneTraining [24].
The aspect ratio and resolution information before scaling
are shown in Fig. 1.

B. Implementation Details

B.1. Training Network Details

The generator network we deploy is GRL [14], a SOTA im-
age SR network (CVPR 2023). GRL leverages intercon-
nected relationships within various layers of image struc-
tures through a Transformer-based framework, attaining im-
provement in multiple tasks of SR and image restoration.
The model we chose is its tiny version, which has 0.91M
parameters. To better adapt the real-world SR task, we
changed its upsampler module from the default pixel shuffle
strategy to the nearest neighbor interpolation with the con-
volution layer approach, which is used for the base model
version but not for the tiny version in their proposed meth-
ods. We change the upsampler because the nearest neighbor
interpolation with the convolution layer is claimed to show
fewer artifacts in the upsampling process than the pixel
shuffle strategy. The final network parameter is 1.03M,
which is the smallest network among all image and video-
based SOTA methods that we compare.

B.2. Hand-drawn line enhancement Details

In the hand-drawn line enhancement, we have proposed out-
lier filter and passive dilate techniques to obtain a clean
XDoG-extracted [27] hand-drawn line edge map. XDoG is
widely used in paired dataset preparation in anime coloriza-
tion [4, 5, 11, 23]. The extracted edge map by XDoG is
a binary output, where the white pixel stands for the active
edge map region and the black pixel stands for the unrelated
region.

For the outlier filter, we use breadth-first search in eight
directions to recursively detect the surrounding pixels of all
white pixels and turn white pixel regions into black pixels if
the total quantity of connected white pixels is less than the
threshold. We empirically set the threshold as 32.

For the dilation, we passively replace the black pixel with
the white pixel if it has more than 3 white pixel neighbors,
which is different from independent kernel-based active di-
lation methods in [7, 9, 13] that directly spread the sur-
rounding neighbors to be white pixels if the central pixel
is white. Compared to active dilation methods, our pro-
posed passive dilation is more concentrated on the hand-
drawn lines region instead of covering unrelated pixel infor-
mation (see Fig. 3). Thus, we name our methods as passive
dilatation.

In the implementation, we will do an unsharp mask
for the whole image first to increase overall visualization
sharpness and then apply two extra turns of sharpening to
the hand-drawn lines specifically based on the pipeline de-
sign mentioned above. More implementation details can be
found in our released code.

B.3. Balanced Twin Perceptual Loss Details

As shown in Fig. 2, our proposed middle-layer output com-
parisons for ResNet50 [10] follow the idea proposed by
ESRGAN [25] which compares feature map outputs be-
fore the activation layer. Following VGG-based percep-
tual loss [12], we compare the last convolution layer of
each stage. There are five middle-layer output compar-
isons, which are the same quantity as VGG-based percep-
tual loss [12]. Thus, our proposed twin perpetual loss
reaches a mutual balance in training.

B.4. Degradation Details

For the prediction-oriented compression module of the
degradation model, we deploy both the image compression
with prediction mechanism (i.e., WebP [17] and AVIF [8])
and single-frame video compression. Meanwhile, for
the robustness of the degradation model, we keep the
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Figure 1. API dataset extra statistics.

JPEG [22]. The quality factor range of JPEG, WebP, and
AVIF is [20, 95] with encoding speed in the range of [0, 6]
for WebP and AVIF. The probability of fetching the value
in the range is equal.

For the stability of video compression processing, we
choose the widely-used video processing tools, ffmpeg,
to perform the proposed single-frame compression of
MPEG2 [15], MPEG4 [2], H.264 [16], and H.265 [19].
In ffmpeg, CRF is an engineering system to control the
quantization level, and preset is a speed control mecha-
nism whose setting is directly related to compression dis-
tortions. For MPEG2 and MPEG4, we empirically find
that the quality factor control (-qscale:v) is a better way
to control single-frame compression, but for H.264 and
H.265, CRF is a better way to control. For MPEG2 and
MPEG4, we set the quality factor in the range [8, 31]. For
H.264 and H.265, we set the CRF in the range [23, 38]
and [28, 42] respectively. The preset for all of them is
{slow,medium, fast, faster, superfast} with probabil-
ity {0.05, 0.35, 0.3, 0.2, 0.1}.

The first prediction-oriented compression includes
JPEG [22] and WebP [17] with a probability of {0.4, 0.6}
respectively. The second prediction-oriented compres-
sion includes JPEG [22], WebP [17], AVIF [8], and
single-frame compression of MPEG2 [15], MPEG4 [2],
H.264 [16], and H.265 [19] with probability of
{0.06, 0.1, 0.1, 0.12, 0.12, 0.3, 0.2} respectively. For
the first resize module, we set the scaling in the range of
[0.1, 1.2] with probability {0.2, 0.7, 0.1} to scale up, scale
down, or remain current resolution. For the second resize
module, we choose the range of [0.15, 1.2] with probability
{0.2, 0.7, 0.1}. More implementation details can be found
in our released code.

C. More Qualitative Comparisons
In this section, we present more qualitative results to ver-
ify the effectiveness of our APISR among SOTA methods.
Moreover, we provide visual comparisons for the ablation
studies.
Extra Qualitative Comparisons with SOTA methods.
Fig. 4 and Fig. 5 show extra qualitative comparisons on
AVC-RealLQ [28] datasets for 4× scaling. This includes

image-based Real-ESRGAN [26] and BSRGAN [29], and
video-based RealBasicVSR [6], AnimeSR [28], and VQD-
SR [21]. Our APISR presents clearer and sharper hand-
drawn lines (first example of Fig. 4, first and second exam-
ples of Fig. 5, and third example of Fig. 6), better restora-
tion with more natural details (second and third examples of
Fig. 4, and third example of Fig. 5), and does not present un-
wanted color artifacts (first and second examples of Fig. 6).
Qualitative Comparisons of Ablation Studies. Fig. 7,
Fig. 8, and Fig. 9 shows the qualitative comparisons of ab-
lations studies.

As shown in Fig. 7, the network trained with AVC-
Train [28] over-sharpens the grid texture and produces an-
noying artifacts as denoted by the arrows in the figure. Sim-
ilarly, the network trained with the random sampled or IQA-
based sampled dataset can alleviate this artifact but is still
hard to completely remove it. However, when we intro-
duce the ICA-based selection method with I-Frame dataset
collection, this artifact is greatly removed and the generated
image shows more natural details. This is thanks to versatile
complex scenes included in the dataset due to ICA-based se-
lection. With 720P rescaling, fewer ringing artifacts appear.

As shown in Fig. 8, the network trained with high-
order [26] and random order [29] degradation model
presents ringing artifacts, rainbow effects, and color distor-
tions as denoted by the arrows in the figure. Nevertheless,
introducing our proposed prediction-oriented compression
module in the degradation model promotes the network to
greatly restore these problems and generate more natural
details with less distorted hand-drawn lines. Moreover, with
the shuffled resize module in the degradation model, more
distortions are restored and present natural shadow details.

As shown in Fig. 9, the network trained with the plain
version presents unwanted color pixel artifacts and sparse
hand-drawn line information as denoted by the arrows in the
figure. With the hand-drawn line enhancement, the hand-
drawn line around the eyes of the character is greatly in-
tensified and more details are generated. However, the un-
wanted color pixels still exist and they are presented as an
annoying artifact. With the twin perceptual loss, the un-
wanted color pixels are greatly alleviated. Further, with
the scaling to early layers in ResNet perceptual loss, more
shadow artifacts and distortions are restored.
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Figure 2. The overview of our proposed middle-layer outputs of ResNet50 [10] perceptual loss trained by Danbooru dataset [3]. Overall,
ResNet50 can be summarized into five stages which is similar to VGG [18]. ϕj represents the perceptual function that returns jth layer
output of ResNet50.

Figure 3. Comparisons between active and passive dilation.
Our proposed passive dilation is more concentrated on the hand-
drawn line region without producing over-sharpened pseudo-GT
images as in active dilation methods.
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Figure 4. Qualitative comparisons on AVC-RealLQ [28] for 4× scaling. Our APISR presents clearer and sharper hand-drawn lines, better
restoration with more natural details, and does not present unwanted color artifacts. Zoom in for the best view.
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Figure 5. Qualitative comparisons on AVC-RealLQ [28] for 4× scaling. Our APISR presents clearer and sharper hand-drawn lines, better
restoration with more natural details, and does not present unwanted color artifacts. Zoom in for the best view.
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Figure 6. Qualitative comparisons on AVC-RealLQ [28] for 4× scaling. Our APISR presents clearer and sharper hand-drawn lines, better
restoration with more natural details, and does not present unwanted color artifacts. Zoom in for the best view.
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Figure 7. Qualitative comparisons of the first ablation study. IQA stands for image quality assessment. ICA stands for image complexity
assessment. 720P stands for our proposed 720P rescaling. Zoom in for the best view.
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Figure 8. Qualitative comparisons of the second ablation study. Zoom in for the best view.
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Figure 9. Qualitative comparisons of the third ablation study. Hand-drawn lines enhancement is denoted as Sharpen and twin percep-
tual loss is denoted as APL. Balanced Scale presents the early layer scaling to ResNet perceptual loss. Zoom in for the best view.
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