
A. Implementation Details

Computing Platform. In this paper, we use PyTorch to
implement all the algorithms and experiments in both the
main paper and this supplementary material. We run our
experiments using an Nvidia RTX3090 GPU with 24 GB of
memory.

Model Architecture. In Section 5, we adopt a convolu-
tional neural network (ConvNet) that follows the same ar-
chitecture as reported in [37]. The encoder of this model
consists of three convolutional layers, each followed by a
ReLU activation function and average pooling. To facilitate
comparison with FedBN, batch normalization is incorpo-
rated into the model. A fully-connected layer serves as the
classifier and is attached on top of the encoder.

Training Details. In addition to the configurations and hy-
perparameters detailed in Sections 5.1 and 5.2, we have
set specific values for other algorithms. For FedProx and
MOON, the hyperparameter µ is set to 0.001 and 1.0, re-
spectively. In FedDyn, we use 0.01 for the hyperparam-
eter α. For experiments on the DomainNet dataset with
FedDM and FedAF, we employ an image-per-class (IPC)
of 20, to achieve a similar condensation ratio as label-skew
scenarios. Additionally, we resize the images of Domain-
Net into 64×64 resolution. For FedAF, the regularization
weights (λloc, λglob) for collaborative data condensation and
local-global knowledge matching are set to (0.0001,0.01),
(0.0001,0.01), and (0.001, 2.0) on CIFAR10, CIFAR100,
and FMNIST, respectively. On DomainNet, we use (0.01,
0.1) for (λloc, λglob). Furthermore, for all algorithms, we
employ PyTorch’s built-in SGD optimizer with a momen-
tum of 0.9. The same implementation is also used for the
optimizer of local data condensation in FedDM and FedAF.
The accuracy evaluation for all algorithms is conducted over
the testing split of each benchmark dataset, to simulate cen-
tralized validation or test data at the server. For all exper-
iments, we average the accuracy and learning curves over
three trial runs, each with a different random seed.

Visualizing Data Distribution. For label-skew data hetero-
geneity, we explore three degrees of non-IID in cross-client
data distribution, represented by α values of 0.02, 0.05, and
0.1, where a smaller α indicating stronger heterogeneity.
Figures 6, 7, and 8 show the class-wise data distribution per
client for CIFAR10, CIFAR100, and FMNIST datasets, re-
spectively, using a random seed from our experiments. In
these figures, the size of the blue circles corresponds to the
number of data samples. We observe that with a smaller
α, clients tend to possess data concentrated in fewer classes
and share fewer common classes, indicating a more pro-
nounced label-skew non-IID distribution. For feature-skew
heterogeneity, we analyze feature distribution in Figure 9.
Here, domain features are extracted using the encoder of a

Methods α=0.02 α=0.05 α=0.1

FedAvg 26.48±0.58 32.72±2.47 35.85±3.73
FedProx 26.86±2.69 32.73±2.45 36.25±2.96
FedBN 27.00±2.49 30.29±3.38 35.48±3.45
MOON 29.59±3.57 33.11±3.74 37.26±2.66
FedDyn 22.67±1.54 29.89±4.48 35.38±1.56
FedGen 26.63±2.07 32.48±3.04 38.85±2.00

FedDM 39.18±0.29 39.47±0.66 40.83±0.67
FedAF 41.10±0.50 41.40±0.66 42.93±0.29

Table 6. Comparison of accuracy achieved by various state-of-the-
art baselines by training ResNet18 on CIFAR10. Three different
degrees of label-skew data heterogeneity are implemented.

ResNet50 [12] pre-trained on ImageNet-1K [6]. The fea-
tures are then fitted into a 2D space using t-SNE [28] for
visualization. Figure 9 clearly shows that, despite identical
classes across six domains, the feature distribution of each
clas varies significantly from one domain to another.

B. More Experiment Results with ResNet18
In further experimentation, we evaluate the performance
of FedAF and compare it to baseline methods using a
ResNet18 model [12] on CIFAR10 dataset. Conducting
20 communication rounds for all algorithms, the resulting
accuracy are presented in Table 6. As expected, FedAF
consistently outperforms the baseline methods in both ac-
curacy and related standard deviation across three different
degrees of data heterogeneity. This advantage is particularly
pronounced under strong heterogeneity, such as at α=0.02,
where FedAF achieves a 14.62% higher accuracy than Fe-
dAvg and an 11.51% improvement over MOON, the top
performer of aggregate-then-adapt baselines. Additionally,
FedAF maintains steady accuracy advantages of 2% over
FedDM throughout all the α settings.

C. Communication Cost Analysis
Baseline Methods and Model Size. For typical aggregate-
then-adapt baseline methods like FedAvg, only the model
parameters are communicated back and forth between
clients and the server. In our experiments, the ConvNet and
ResNet18 model has 381,450 and 11,181,642 parameters,
respectively. With float32 precision, each parameter takes
4 bytes, so that the size of these two models is evaluated at
1.46 MB, and 42.65 MB, respectively.

FedAF and Size of Condensed Data. In FedAF’s up-
stream communication, each client k sends three items to
the server: 1) the local condensed data Sk, 2) the class-
wise mean logit Vk, and 3) the class-wise mean soft la-
bels Rk, whereas in the downstream communication, each
client k downloads two items: 1) the global model w which
shares the same architecture as that in aggregate-then-adapt
baselines, and 2) the class-wise mean logits from all other



(a) CIFAR10 α=0.02 (b) CIFAR10 α=0.05 (c) CIFAR10 α=0.1

Figure 6. Visualization of cross-client data distribution for CIFAR10 dataset under three different degrees of label-skew heterogeneity.

(a) FMNIST α=0.02 (b) FMNIST α=0.05 (c) FMNIST α=0.1

Figure 7. Visualization of cross-client data distribution for FMNIST dataset under three different degrees of label-skew heterogeneity.

clients, denoted by V in (9). The matrices Vk and Rk share
the same size, for ten-class datasets like CIFAR10, FM-
NIST, and the sub-dataset we extracted from the Domain-
Net, both Vk and Rk include ten vectors with ten values in
float32, making the size of them is approximately 4×10−4

MB each. Whereas for CIFAR100 that contains data of 100
classes, the size of Vk and Rk altogether is then evaluated
at approximately 0.076 MB. Assuming that the condensed
data is stored and transmitted in the PIL format so that one
can use 8-bit unsigned integer (or 1 byte) for each pixel per
channel, the size of every ten such condensed data samples
from FMNIST is evaluated at 7.5×10−3 MB. Similarly, the
size of every ten condensed data learned from CIFAR10 or
CIFAR100 is about 0.03 MB.

Comparison with FedAvg. With the above calculation as
a base, we compare the per-round upstream communication
cost incurred by FedAF and that of typical aggregate-then-
adapt method such as FedAvg in Table 7, where FedAF us-
ing an image-per-class (IPC) of 50. As described earlier, we
use three random seeds to generate the three sets of data dis-
tribution and report the average communication overhead.
Note that the communication cost of transmitting Vk, V , and
Rk is negligible compared to transmitting the condensed
data and the model, so the downstream communication cost
is essentially the same as that incurred by downloading the
global model from the server, which is the same for FedAvg
and FedAF. From Table 7, one can observe that for training
the ResNet18 model, FedAF is much more efficient in com-
munication cost compared to FedAvg. When learning the

Dataset α CNN ResNet18
FedAvg FedAF FedAvg FedAF

FMNIST
0.02

1.46 MB
0.06 MB

42.65 MB
0.06 MB

0.05 0.09 MB 0.09 MB
0.1 0.14 MB 0.14 MB

CIFAR10
0.02

1.46 MB
0.22 MB

42.65 MB
0.22 MB

0.05 0.31 MB 0.31 MB
0.1 0.44 MB 0.44 MB

CIFAR100
0.02

1.46 MB
1.93 MB

42.65 MB
1.93 MB

0.05 2.46 MB 2.46 MB
0.1 3.22 MB 3.22 MB

Table 7. Per-round upstream communication cost incurred by Fe-
dAvg and FedAF for learning CNN and ResNet18 on FMNIST,
CIFAR10, and CIFAF100. FedAF uses an IPC of 50.

ConvNet model, which is relative smaller in size, FedAF
still achieves significantly higher communication efficiency
than FedAvg, especially on FMNIST and CIFAR10. While
FedAvg incurs slightly less communication than FedAF for
learning the ConvNet model on CIFAR100, FedAF dras-
tically outperforms FedAvg in accuracy and convergence
(see performance comparison in Section 5.1). Moreover,
unlike FedAvg, where the communication cost is solely de-
termined by the model size and thus becomes increasingly
expensive when a larger model is being learned, FedAF’s
communication cost is irrespective of the size of the under-
lying model. More interestingly, FedAF incurs less commu-
nication overhead in stronger label-skew data heterogene-
ity scenarios. These merits mark the extraordinary cost-
effectiveness of FedAF.



(a) CIFAR100 α=0.02

(b) CIFAR100 α=0.05

(c) CIFAR100 α=0.1

Figure 8. Visualization of cross-client data distribution for CIFAR100 dataset under three different degrees of label-skew heterogeneity.

Figure 9. T-SNE visualization of features extracted from DomainNet data, using a sub-dataset split from [23].


