
Attention-Driven Training-Free Efficiency Enhancement of Diffusion Models

Supplementary Material

The Supplementary Material is organized as follows. We
first provide more implementation details of AT-EDM in
Section A, including a detailed illustration of the SD-XL
backbone. Then, we provide a more comprehensive com-
parison with the state-of-the-art method, ToMe [1], in Sec-
tion B, including an analysis of why ToMe performs worse
on SD-XL [6] than on previous versions of Stable Diffu-
sion Models (SDMs). We provide more ablation results in
Section C to justify our design choices in the main article.
We analyze the memory footprint of AT-EDM in Section
D. AT-EDM is orthogonal to various efficient DM methods,
such as sampling distillation, thus can further boost their ef-
ficiency. To support this claim, we deploy AT-EDM in the
distilled version of SD-XL, SDXL-Turbo1, and show cor-
responding experimental results in Section E. We discuss
limitations and trade-offs of AT-EDM in Section F and po-
tential negative social impacts of AT-EDM in Section G.

A. Implementation Details

In this section, we provide more details of the implementa-
tion of AT-EDM. We first introduce the architecture of our
SD-XL backbone as background material and then describe
our single-step and cross-step pruning schedules in detail.
Then we provide details of the evaluation and our calibra-
tion block for FLOPs measurement. We demonstrate the
baseline methods of similarity-based copy in detail and pro-
vide the extra latency incurred by different pruning steps in
the end.

A.1. The SD-XL Backbone

The state-of-the-art version of SDM is SD-XL. Compared
with previous SDM versions [7], it increases the quality of
generated images significantly. Thus, we select SD-XL as
the backbone model in this article. Specifically, we deploy
AT-EDM and ToMe on SDXL-base-0.9. The architec-
ture has two main differences from that of previous SDMs,
such as SD-v1.5 and SD-v2.1: (1) attention blocks at the
highest feature level (i.e., with the most tokens) are deleted;
(2) attention blocks can potentially include multiple atten-
tion layers (an attention layer is composed of self-attention,
cross-attention, and feed-forward network), such as A2 (in-
cludes 2 attention layers) and A10 (includes 10 attention
layers).

To validate the conclusion that the cost of attention lay-
ers dominates the sampling cost, we investigate the FLOPs
cost of SD-XL. Its FLOPs profile is shown in Fig. 1. This

1https://huggingface.co/stabilityai/sd-turbo
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Figure 1. The FLOPs breakdown of SD-XL. Measured with
1024×1024 px image generation.
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Figure 2. The FLOPs of ResNet blocks and attention blocks in
SD-XL at different image resolutions.

figure indicates that the attention block dominates the com-
putational cost of all stages that include attention. We also
investigate the scaling law of SD-XL at different genera-
tion resolutions, as shown in Fig. 2. We observe that the
attention block dominates the cost at all resolutions. Note
that the FLOPs cost of attention blocks does not scale much
faster than that of ResNet blocks when the generation res-
olution increases. We believe this is due to the elimination
of attention blocks at the highest feature level and the addi-
tion of attention layers at the lowest feature level, making
the cost of feed-forward layers, which scales linearly with
an increment in token numbers, a huge part of the cost of
attention layers.

A.2. Pruning in a Single Denoising Step

For a concise design, we always insert the pruning layer
after the first attention layer of each attention block. All
the other attention layers in this attention block can benefit
from the reduction in token numbers. We may also insert
multiple pruning layers at various locations in an attention
block, which prunes tokens gradually. However, this re-
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Figure 3. The U-Net architecture of SD-XL. Residual connections are not shown here for brevity. The example in this figure generates
a 8H × 8W pixel image. The input/output size of each stage is shown in the C × H × W format, where C is the number of channels;
H and W represent the resolution. There are two attention blocks {F(First), L(Last)} in each downsampling stage and three {F(First),
M(Middle), L(Last)} in each upsampling stage. In the prune-less schedule, we do not apply pruning to attention blocks in the gray
rectangles. Downsampling stage 1, 2, and 3 is at the first, second, and third feature level, respectively. AT-EDM† does not apply pruning
to attention blocks at the second feature level.

quires a more thorough hyperparameter search to ensure a
good balance between FLOPs cost and image quality.

A.3. The Prune-Less Schedule

Early denoising steps determine the layout of the generated
images and have a weaker ability to differentiate between
unimportant tokens [2]. Thus, we need heterogeneous de-
noising steps and, hence, use a less aggressive pruning
schedule for some of the early denoising steps.

In the normal pruning setting, when we target 4.1
TFLOPs for each sampling step, we use a pruning rate of
63% (i.e., retain 37% tokens) after the first attention layer
of A2 and A10; in the prune-less schedule, we do not ap-
ply pruning to attention blocks in the gray rectangles shown
in Fig. 3. We validate the choice of not deploying prun-
ing through ablative experimental results shown in the main
article.

A.4. Details of Evaluation

When measuring the FID and CLIP scores on MS-COCO
2017 [4], we deduplicate captions to make sure each im-
age corresponds to a single caption. We center cropped im-
ages in the validation set, resize them to 1024×1024 px,
and use the clean-fid library2 to calculate FID scores.

2https://github.com/GaParmar/clean-fid/tree/main

We use the ViT-G/14 model of Open-CLIP3 to calculate the
CLIP scores of generated images. We set the batch size to 3
when we generate images for visual comparison and quanti-
tative analysis. We run all experiments on a single NVIDIA
A100-40GB GPU.

A.5. Calibration Block for FLOPs Measurement

The popular library for FLOPs measurement, fvcore4,
is not natively compatible with SDMs. Thus, we use
the THOP5 library instead to measure the FLOPs cost of
SDMs. However, we found it does not correctly compute
the FLOPs cost of self-attention. The FLOPs cost of sam-
pling steps given by this library scales linearly as the num-
ber of image tokens. This is unreasonable because the cost
of self-attention in sampling steps scales quadratically when
the number of tokens increases (other parts of a sampling
step scale linearly). After a thorough investigation of the
behavior of THOP, we found that it basically does not take
the cost of self-attention into account. Thus, we design a
calibration block to supplement the missed term of FLOPs
cost for each attention block:

3https://github.com/mlfoundations/open clip
4https://github.com/facebookresearch/fvcore
5https://github.com/Lyken17/pytorch-OpCounter
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Fcali = 4×B ×Na × (HW )2 × C (1)

where B is the batch size; Na is the number of attention
layers in this attention block; HW is the number of image
tokens; and C is the number of channels. The factor 4 is
due to the fact that (1) there are two images processed at
the same time for each generated image in a batch (one is
guided by the prompt and another is not); (2) there are two
Matrix-Matrix Multiplications (MMMs) in self-attention.

A.6. Baselines of Similarity-based Copy

Here, we introduce several straightforward methods as the
baselines of similarity-based copy to recover pruned tokens.
(I) Padding Zeros. One straightforward way to do this is
to pad zeros. However, to maintain the high quality of gen-
erated images, we hope to recover the pruned tokens as pre-
cisely as possible, as if they were not pruned.
(II) Interpolation. Interpolation methods, such as bicubic
interpolation, are not suitable in this context. To use the in-
terpolation algorithm, we first pad zeros to fill the pruned
tokens and form a feature map of size N × N . Then we
downsample it to N

2 × N
2 and upsample it back to N × N

with the interpolation algorithm. We keep the values of re-
tained tokens fixed and only use the interpolated values of
pruned tokens. Due to the high pruning rates (usually larger
than 50%), most tokens that represent the background get
pruned, leading to lots of pruned tokens that are surrounded
by other pruned tokens instead of retained tokens. Interpo-
lation algorithms assign nearly zero values to these tokens.
(III) Direct copy. Another possible method is to use the
corresponding values before pruning is applied (i.e., before
being processed by the following attention layers) to fill
the pruned tokens. The problem with this method is that
the value distribution changes significantly after being pro-
cessed by multiple attention layers, and copied values are
far from the values of these tokens if they are not pruned
and are processed by the following attention layers.

A.7. Extra Latency Incurred by Pruning

We measure the generation latency on a single A100 GPU.
The deployment of pruning incurs extra latency. We show
corresponding results in Fig. 4. This figure explains why
AT-EDM† is even faster than AT-EDM with FO under CI,
although AT-EDM† prunes less than AT-EDM (it does not
perform pruning at the second feature level).

B. Comprehensive Comparison with ToMe
In this section, we first analyze why ToMe cannot replicate
on SD-XL its good performance on previous SDMs in Sec-
tion B.1. Then, we present cases in which both AT-EDM
and ToMe perform well and visually compare AT-EDM and
ToMe under various FLOPs budgets in Section B.3.
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Figure 4. Latency incurred by different pruning steps shown in
Fig. 3 of our main paper. Measured w/ FO under CI. Note that un-
der DI, the latency of Step 1 (get the attention map) is eliminated.

B.1. Deploying ToMe on SD-XL

For SD-v1.x and SD-v2.x, ToMe maintains the generated
image quality quite well after token merging. However, as
we demonstrate in the main article, ToMe incurs obvious
quality degradation on SD-XL after token merging.

In the default setting of ToMe, it only merges tokens for
attention blocks at the highest feature level and their self-
attention. However, SD-XL eliminates attention blocks at
the highest abstraction level and native ToMe does not do
anything to this backbone. Thus, it is necessary to expand
its merging range to attention blocks at all feature lev-
els. In addition, since SD-XL adds a lot more attention
layers at the lowest feature level, where tokens are signif-
icantly fewer than at higher feature levels, self-attention no
longer dominates the cost of attention layers. Given that
the merging ratio of ToMe has an upper limit of 75%, it is
not enough to only merge tokens for self-attention to meet
the 4.1 TFLOPs budget. Thus, it is necessary to expand
its merging range to Cross-Attention (CA), Self-Attention
(SA), and the Feed-Forward (FF) network. We believe
the expanded deployment range of token merging leads to
the relatively poor performance of ToMe on SD-XL. Note
that to meet the 4.1 TFLOPs budget for each sampling step,
we set the merging ratio to 50% for ToMe under the ex-
panded merging range.

B.2. Complete FID-CLIP Curves

We explore the trade-off between the CLIP and FID scores
through various CFG scales. We show the complete FID-
CLIP curves in Fig. 5. AT-EDM† does not deploy pruning
at the second feature level (as mentioned in the caption of
Fig. 3). This figure illustrates that for most CFG scales,
AT-EDM not only lowers the FID score but also results in
higher CLIP scores than ToMe, implying that images gener-
ated by AT-EDM not only have better quality but also better
text-image alignment.

B.3. More Images from AT-EDM and ToMe

In some cases, ToMe performs fairly well and has its mer-
its. We show several typical examples in Fig. 6. The first
example in the first row represents the case of a simple main
object with a simple background. Both ToMe and AT-EDM
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Figure 5. Complete FID-CLIP score curves. The used CFG scales
are [1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 12.0, 15.0].

preserve the main object quite well. The second row repre-
sents a more complex case in which there are multiple main
objects in the generated image. Although ToMe loses some
texture details, it preserves the overall layout quite well.
The third row is the case of a typical complex main object,
a human face. In this example, ToMe preserves the face
without artifacts. The last row of this figure demonstrates
the case of generating a complex scene without a main ob-
ject. In this case, both ToMe and AT-EDM can maintain the
layout well while supplementing some details. These exam-
ples show that ToMe is a strong baseline and it is non-trivial
to outperform it.

We also provide visual examples of ToMe and AT-EDM
under different FLOPs budgets in Fig. 7. It indicates that
AT-EDM outperforms ToMe under all FLOPs budgets. We
also observe that AT-EDM needs at least a 3.6 TFLOPs bud-
get to ensure an acceptable image quality.

C. More Ablation Experiments

In this section, we supplement ablation experiments to val-
idate our design choices. We first discuss the deployment
location for run-time pruning and then compare different
implementations of the mapping function f(A, sK) for CA-
based WPR. Note that CA-based WPR and SA-based WPR
are two implementations of G-WPR and we mainly focus
on CA-based WPR in this section. We also investigate the
schedule that prunes more in early denoising steps and ver-
ify our intuition of pruning less in early steps.

C.1. Deployment Location for Run-Time Pruning

In our default setting, we use generated masks after the FF
layer to perform token pruning. Another option is to per-
form pruning early before the FF layers, which results in a
little bit of extra FLOPs savings at the cost of image qual-
ity. We provide several visual examples in Fig. 8. Note that,

(a) SD-XL (b) ToMe (c) AT-EDM

Figure 6. Examples on which both AT-EDM and ToMe perform
well. Each row of this figure corresponds to the following typical
cases: (1) simple single main object with a simple background; (2)
multiple main objects; (3) complex single main object; (4) com-
plex scene without a main object.

here, we simply change the pruning layer insertion location
without keeping the total FLOPs cost fixed, which is differ-
ent from what we do in the ablation experiments in the main
article. We find that inserting the pruning layer before the
FF layer indeed hurts image quality (although slightly). For
example, the plant in the first example and the UFO in the
second example become worse. Given that pruning before
the FF layer only results in marginal extra FLOPs savings
(reduces the cost from 4.1 TFLOPs to 4.0 TFLOPs), we
choose to prune after the FF layer to obtain better image
quality.

C.2. Implementations of CA-based WPR

To generalize WPR [9] to cross-attention, we need to de-
sign a function f(A, sK) that maps the importance of Key
tokens to that of Query tokens. The intuition behind design-
ing this function is that vital Query tokens should devote
much of their attention to important Key tokens. Thus, the
desired attention distribution should satisfy: (1) similarity
to the importance distribution of Key tokens; (2) concen-
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Figure 7. Comparison between AT-EDM and ToMe under different FLOPs budgets. Note that for Col.e, the average cost of each sampling
step for AT-EDM (ToMe) is 4.52 (4.56) TFLOPs. Prompts are selected from the MS-COCO 2017 validation dataset.

tration on a few tokens. Then, when designing f(A, sK),
we need to (1) reward the similarity between the attention
distribution (i.e., each row of A) and the importance distri-
bution (i.e., sK); (2) penalize uniform attention distribution.
Based on these points, we obtain several implementations of
f(A, sK). We had mentioned an entropy-based implemen-
tation in the main article, which rewards similarity through
the dot-product and penalizes uniform distribution through
entropy. We provide additional implementations here:

(I) Hard-clip-based implementation

st+1
Q (xi) = f(A, st+1

K ) =

N∑
j=1

ϵ(Ai,j − η) · st+1
K (xj) (2)

where ϵ(x) = 1 if x ≥ 0, ϵ(x) = 0 if x < 0; η is the
threshold of attention (we set it to 0.2 as the default setting);
Ai,j is the attention from Query qi to Key kj .
(II) Soft-clip-based implementation
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(a) SD-XL (b) After-FF (c) Before-FF

Figure 8. Comparison between inserting the pruning layer after
the FF and before the FF layer.

st+1
Q (xi) = f(A, st+1

K ) =

N∑
j=1

Sig(Ai,j−η)·st+1
K (xj) (3)

where Sig(x) = 1
1+e−x .

(III) Power-based implementation

st+1
Q (xi) = f(A, st+1

K ) =

N∑
j=1

(β · st+1
K (xj))

α·Ai,j (4)

where α and β are scaling factors to ensure that β ·
st+1
K (xj) > 1 and α ·Ai,j > 1 for large st+1

K (xj) and Ai,j .
Here, we let α = 5 and β = Nt

2 , where Nt denotes the
number of Key tokens.

We compare these implementations visually in Fig. 9.
We find that among these implementations, the hard-clip-
based implementation performs the worst. Although the
entropy-based implementation and the power-based imple-
mentation are better than other implementations for CA-
based WPR, none of them can outperform SA-based WPR.
Thus, we use SA-based WPR as our default setting in AT-
EDM.

C.3. Prune-Less Schedule for Early Denoising Steps

The prune-less schedule selects one attention block from
each down-stage and up-stage in the U-Net and skips the
token pruning in it. We generate images with the same
prompts and different selections, as shown in Fig. 10. It
indicates that F-L appears to be the best choice. F-L is the
schedule that we show in Fig. 3.

C.4. The Number of Prune-Less Steps

The intuitions that we use to design the prune-less sched-
ule in the early denoising steps are (1) early denoising steps
determine the layout of generated images and thus are cru-
cial; (2) early denoising steps have a weaker ability to dif-
ferentiate unimportant tokens. The first intuition prohibits
us from pruning more tokens in the early steps (see Section
C.5). The second intuition guides us to choose the number
of prune-less steps. The variance of attention maps reflects
their ability to differentiate unimportant tokens since the at-
tention score of unimportant tokens deviates significantly
from that of normal tokens. We show the variance of atten-
tion maps given by different denoising steps in Fig. 5 of our
main paper. The figure indicates that the variance is more
than 1.0E-5 after the first 15 denoising steps. This supports
our hyperparameter choice.

C.5. Prune More in Early Denoising Steps

In AT-EDM, we design a cross-step pruning schedule that
is less aggressive in early denoising steps. This is based
on the intuition that (1) early denoising steps determine the
layout of generated images and thus are very important; (2)
the ability of early denoising steps to differentiate between
unimportant tokens is weaker than that of later steps. To
verify our intuition, we investigate the schedule that prunes
more in early denoising steps. Note that for symmetry,
“prune more in the first 15 steps” selects corresponding at-
tention blocks in the last 35 steps for not pruning tokens
while keeping the total FLOPs cost fixed. We provide vi-
sual examples in Fig. 11 for comparison. These examples
clearly support our intuition that pruning more in early de-
noising steps not only affects the layout of generated images
but also hurts image quality.

D. Memory Footprint of AT-EDM
Since we need to obtain the attention map from the first
attention layer, AT-EDM cannot reduce the peak memory
footprint. However, benefiting from the significantly re-
duced number of tokens in the following attention lay-
ers, AT-EDM reduces the average memory footprint sig-
nificantly. Since PyTorch does not automatically release
the redundant assigned memory when the memory require-
ment reduces in the later layers, we theoretically estimate
the average footprint of AT-EDM, assuming the redundant
occupied memory will be released in the layers with fewer
tokens. We believe this is practical when the implementa-
tion is good enough. The peak and theoretical average foot-
print of full-size SD-XL (AT-EDM) are 19.5GB (19.5GB)
and 18.8GB (12.6GB), respectively. This indicates that if
we have a fine-grained pipeline schedule, AT-EDM allows
us to run 49.2% more generation tasks with the given
VRAM restriction.
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(a) SD-XL (b) SA-WPR
(c) Entropy

CA-WPR

(d) Hard Clip (e) Soft Clip (f) Power
Figure 9. Comparison between different implementations of Cross-Attention-based WPR. None of them can outperform Self-Attention-
based WPR.

(a) SD-XL (b) F-F (c) F-M (d) F-L (e) L-F (f) L-M (g) L-L
Figure 10. Comparison between different prune-less settings. There are two attention blocks {F(First), L(Last)} that are left unpruned in
the downsampling stages and three {F(First), M(Middle), L(Last)} in the upsampling stages. Results indicate that F-L is the best schedule.

E. Stack with Sampling Distillation

Methods like consistency distillation [5, 8] can greatly re-
duce the cost of DMs. Note that AT-EDM is compatible
with these methods and can be deployed to speed them
up further. To support this claim, we deploy AT-EDM
in SDXL-Turbo, which is a distilled version of SD-XL.
Our experimental results show that although SDXL-Turbo
reduces around 95% FLOPs cost of SD-XL, AT-EDM
can further reduce the FLOPs cost of SDXL-Turbo by
33.4% while reducing FID by 14.5% and only incurring
2.1% CLIP reduction on MSCOCO-2017 validation set.
AT-EDM works as a regularizer and slightly improves the
quality of images.

F. Limitations and Trade-Offs

AT-EDM demonstrates state-of-the-art results for accelerat-
ing DM inference at run-time without any retraining. How-

ever, as a machine learning algorithm, it inevitably has some
limitations.
(1) AT-EDM requires a pre-trained DM; since it saves com-
putation to accelerate the model, its performance is inher-
ently upper-bounded by the full-sized one. While most of
the time, AT-EDM matches the performance of the pre-
trained model, both quantitatively and qualitatively (see ex-
perimental results in the main article), with around 40%
FLOPs reduction, there exist some samples where the full-
sized model outperforms AT-EDM (see Fig. 7). Nonethe-
less, AT-EDM outperforms prior art by a clear margin. In
addition, AT-EDM is differentiable. We will fine-tune the
pruned model to further improve quality in the future.
(2) AT-EDM leverages the rich information stored in the at-
tention maps, which could be inaccessible without incurring
overhead due to the open-sourced nature of the implemen-
tation. For instance, SD-XL [6] adopts an efficient attention
library, xFormers [3], which fuses computation to directly

7
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Figure 11. Comparison between different heterogeneous sampling
schedules. Examples indicate that pruning more tokens in early
denoising steps changes the layout of generated images signifi-
cantly.

obtain succeeding tokens without providing intermediate at-
tention maps. As shown in Table 2 of our main paper, in the
case that Fused Operation (FO) is not used, using AT-EDM
leads to significant latency savings. With FO under the Cur-
rent Implementation (CI), AT-EDM does not result in a huge
latency saving due to the cost of calculating attention maps.
Reusing attention maps across steps and obtaining an ap-
proximation for them could alleviate this issue. With FO
under the Desired Implementation (DI) that provides atten-
tion maps, AT-EDM’s potential is fully unlocked and leads
to a decent speedup.

AT-EDM is especially good at generating object-centric
images, such as a portrait. It can employ a high pruning
rate without hurting the main object. Generating complex
scenes or tens of objects is relatively tricky for AT-EDM
since it may lose some details in corner cases. In some rare
corner cases where the texture details are not significant,
ToME might perform slightly better, as our algorithm may
prune too many tokens in that small region. ToME is indeed
a strong baseline, but it is remarkable that AT-EDM still
outperforms it in most cases.

G. Potential Negative Social Impacts
Text-to-image generative models like SD-XL have brought
significant advancements in the field of AI and digital art
creation. However, they may also potentially have negative
social impact. For example, they can create highly real-
istic images that may be indistinguishable from real pho-
tographs. As the technology can be used to create convinc-
ing but false images, this can potentially lead to confusion

and misinformation spread. In addition, the use of these
models to create inappropriate or harmful content, such as
realistic images of violence, hate speech, or explicit mate-
rial, raises significant ethical questions. There is also the
potential for perpetuating biases if the AI model is trained
on biased datasets.

8



References
[1] Daniel Bolya and Judy Hoffman. Token merging for fast sta-

ble diffusion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4598–4602,
2023.

[2] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022.

[3] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich,
Wenhan Xiong, Vittorio Caggiano, Sean Naren, Min Xu,
Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut,
and Daniel Haziza. xFormers: A modular and hackable
transformer modelling library. https://github.com/
facebookresearch/xformers, 2022.

[4] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
Proceedings of the European Conference on Computer Vision,
pages 740–755. Springer, 2014.

[5] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang
Zhao. Latent consistency models: Synthesizing high-
resolution images with few-step inference. arXiv preprint
arXiv:2310.04378, 2023.

[6] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann,
Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach.
SDXL: Improving latent diffusion models for high-resolution
image synthesis. arXiv preprint arXiv:2307.01952, 2023.

[7] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022.

[8] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

[9] Hongjie Wang, Bhishma Dedhia, and Niraj K. Jha. Zero-
TPrune: Zero-shot token pruning through leveraging of the
attention graph in pre-trained transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

9

https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers

	. Implementation Details
	. The SD-XL Backbone
	. Pruning in a Single Denoising Step
	. The Prune-Less Schedule
	. Details of Evaluation
	. Calibration Block for FLOPs Measurement
	. Baselines of Similarity-based Copy
	. Extra Latency Incurred by Pruning

	. Comprehensive Comparison with ToMe
	. Deploying ToMe on SD-XL
	. Complete FID-CLIP Curves
	. More Images from AT-EDM and ToMe

	. More Ablation Experiments
	. Deployment Location for Run-Time Pruning
	. Implementations of CA-based WPR
	. Prune-Less Schedule for Early Denoising Steps
	. The Number of Prune-Less Steps
	. Prune More in Early Denoising Steps

	. Memory Footprint of AT-EDM
	. Stack with Sampling Distillation
	. Limitations and Trade-Offs
	. Potential Negative Social Impacts

