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Abstract

Real-world systems often encounter new data over time,
which leads to experiencing target domain shifts. Exist-
ing Test-Time Adaptation (TTA) methods tend to apply com-
putationally heavy and memory-intensive backpropagation-
based approaches to handle this. Here, we propose a
novel method that uses a backpropagation-free approach
for TTA for the specific case of 3D data. Our model uses
a two-stream architecture to maintain knowledge about the
source domain as well as complementary target-domain-
specific information. The backpropagation-free property of
our model helps address the well-known forgetting prob-
lem and mitigates the error accumulation issue. The pro-
posed method also eliminates the need for the usually noisy
process of pseudo-labeling and reliance on costly self-
supervised training. Moreover, our method leverages sub-
space learning, effectively reducing the distribution vari-
ance between the two domains. Furthermore, the source-
domain-specific and the target-domain-specific streams are
aligned using a novel entropy-based adaptive fusion strat-
egy. Extensive experiments on popular benchmarks demon-
strate the effectiveness of our method. The code will
be available at https://github.com/abie-e/
BFTT3D.

In this supplementary material, we provide additional ex-
perimental results and discussions.
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1. Experiments
1.1. Main Results

ShapeNet-C. In this section, we further present the re-
sult of our method on a large dataset, ShapeNet-C [4].
ShapeNet [1] is a large-scale point cloud classification
dataset collected from the real world. We use a subset of
the complete ShapeNet dataset with clean 3D models, and
it contains 55 distinct classes, with 35789 samples in the
training set and 10225 in the test set. To build ShapeNet-C,
we employ the setting proposed by [4] to generate different
corruptions in the test set of ShapeNet with severity level
5. From Table 1, TENT [6] and BN [2] effectively reduce
the classification error in test-time adaptation, and our ap-
proach, in particular, has the lowest error compared with
other baseline approaches. This indicates that our approach
is applicable to large-scale datasets, enhancing the source
model’s adaptability.

Method Mean ↓
Source 23.44
TENT [6] 21.45
BN [2] 22.05
SHOT [3] 26.94
BFTT3D (Ours) 21.34

Table 1. Experimental results on ShapeNet-C [4]. The mean clas-
sification errors in % are provided.

1.2. Ablation Study

Number of prototypes. The exact number of prototypes
is determined based on the number of dataset samples. For



Method Inference time Parameters Mean ↓
MATE [4] 313 29.3M 28.70
TENT [6] 24 2.3K 73.50
BFTT3D (Ours) 19 0 19.23

Table 2. Analysis: model efficiency. The experiments are running
on ModelNet-40C [5]. The inference time on each domain in s,
the number of parameters that need backpropagation during the
test time, and the mean error in % are given. The errors of MATE
and TENT are provided in [4].

Method Time Parameters Mean ↓
MATE [4] 150.9 29.3M 64.8
TENT [6] 10.5 2.3K 58.18
BFTT3D (Ours) 9.7 0 54.46

Table 3. Analysis: model efficiency. The experiments are running
on ScanObjectNN-C [4]. The inference time on each domain in
s, the number of parameters that need backpropagation during the
test time, and the mean error in % are given.

example, the prototype number is 2446 for ModelNet-40C,
and the corresponding size of the stored features is 11.31
MB.
Model efficiency. In this part, we evaluate the model effi-
ciency, including the inference time and number of param-
eters that need backpropagation, as summarized in Table 2.
Since our BFTT3D does not require any test-time backprop-
agation, it has the least frequency of parameter updates,
requiring 0 updates compared to other approaches. Thus,
it consumes less time compared with other methods, like
MATE [4] and TENT [6], in the adaptation stage. Other
methods frequently perform parameter updates to perform
adaptation, which adds an unavoidable computation burden
in test time.

We present efficiency test results on ScanObjectNN-
C [4] in Table 3. As shown in the table, MATE has the
highest time consumption because it must perform sample-
by-sample adaptation by constructing masked batches of
samples in test-time. On the other hand, TENT requires
less time in adaptation as it only needs to train the batch
norm parameters in a batch-wise manner. In general, our
BFTT3D has the least computational cost across the board
because there are no model parameters that need to be back-
propagated during adaptation, in contrast to other methods
that require test-time training.

1.3. Discussion

Statistical significance. ModelNet-40C benchmark
presents a minor domain gap, resulting in somewhat sat-
urated performances (see Table 1 of the main paper). To
showcase the statistical significance of our improvements,

Figure 1. Forgetting and error accumulation. The blue line rep-
resents the prediction by sample ID, and the red line refers to our
method.

we compute standard deviation (std) values on two cases.
On ModelNet-40C and ScanObjectNN-C when employing
PointNet, std values are 0.14% and 0.21% over five runs,
respectively, indicating the significance of the results.
Forgetting and error accumulation. Forgetting and er-
ror accumulation issues originate from parameters requiring
gradients. We give a comparison of ModelNet-40C under
lidar corruption with baseline TENT, as shown in Figure 1.
The blue line represents the prediction of TENT, and the
red line refers to our method. Along with the adaptation,
BFTT3D achieves better performance with fewer wrong
predictions generated in the long run.
Natural distribution shifts. Based on results from both
Tables 1 and 2 of the main paper, our network works well
on domains like “background”, “occlusion”, and “lidar”,
which are closer to natural distribution. In other words, our
BFTT3D shows more robustness to the domain under natu-
ral distribution shifts.
Clean accuracy. The clean errors of Source-only/BFTT3D
on ModelNet-40C are 9.76/9.61%, 8.91/8.64%, and
8.10/7.89% for PointNet, DGCNN, and Curvenet. The
clean results for ScanObjectNN-C are 22.55%/20.93%,
15.32%/14.25%, and 28.74%/26.86%. Hence, we can see
the benefit of our BFTT3D when there are no distribution
shifts.
Using the non-parametric network alone. The log-
its from the non-parametric network alone are not suf-
ficient. For example, on ScanObjectNN-C, the results
of the Source-only and Non-parametric network-only are
59.35%/59.45%, respectively, when using PointNet. By
combining the logits from both Source-only and Non-
parametric networks, our BFTT3D achieves better results
at 54.46%. This demonstrates that the Non-parametric net-
work provides complementary information to the source
model.
Comparison between static prototype memory and
target-specific features. We add static prototype memory
to reduce the computational cost and memory consumption.
We generate the target-specific logit by computing the sim-
ilarity matrix. Hence, reducing the dimension of the feature
memory matrix would accelerate the calculation. As shown
in Table 3 of the paper, we could get similar performance
only using 25% of target features.



Limitation. It is empirically found that our method is sen-
sitive to hyperparameter selection, particularly the wave-
length α, and the magnitude of trigonometric functions in
raw embedding β. Overcoming this drawback could be a
direction for future work.
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