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Figure 2. Overview of the proposed CAMixerSR framework. The network architecture is based on SwinIR-light [10] but replaces the
window-based self-attention with the proposed CAMixer and adds an extra global predictor. (The CAMixer is stacked by group, omitted
here for simplicity.) The training framework utilizes two losses, the common ℓ1 loss for image restoration and MSE loss for predictor.

1. More Implementation Details
1.1. Network Architecture

We visualize the overall framework of the proposed
CAMixerSR in Fig. 2. As discussed in the main paper,
the CAMixerSR is a modified SwinIR-light [10] that uses
CAMixer and a global predictor. In general, the CAMix-
erSR consists of four parts: shallow extractor, deep extrac-
tor, reconstruction module, and additional global predictor.
Shallow Extractor (SE). Following previous work [11,
19], given the input low-resolution (LR) image ILR ∈
R3×H×W , we employ a 3×3 convolution as the shallow ex-
tractor to obtain the initial feature:

F0 = fConv (ILR) ∈ RC×H×W . (1)

Global Predictor (GP). Based on the F0, we employ a
global predictor to generate global condition Cg , which is
illustrated in the main paper and stacked by two vanilla con-
volutions.

Cg = fGlobal(F0) ∈ R2×H×W . (2)

Deep Extractor (DE). Similar to SwinIR [10], we stack
the proposed CAMixers and Convolutional Feed-Forward
Network (ConvFFN) to accomplish deep feature extraction.
Specifically, our DE utilizes the Swinv2 [12] design for the

basic block fBlock . Given the input feature F and corre-
sponding condition maps Cg and Cw, this process can be
expressed by:

F = fLN(fCAMixer (F,Cg,Cw) + F),

F = fLN(fFFN(F) + F),
(3)

where fLN(·) represents layer normalization. fCAMixer (·)
and fFFN(·) are CAMixer and ConvFFN, respectively.

Then, we stacks total S blocks by group G={4,4,6,6} to
capture the immediate feature Fi, which is formulated by:

Fi =

{
fBlocki(Fi−1),

fConvj(fBlocki(Fi−1)) + Fi−Gj
,
i = 1, 2, ..., S

(4)
where the bottom equation comes into force when it is the
tail of the group, i.e., i={4,10,14,20}.
Reconstruction Module (RM). Following SwinIR-light,
we adopt the simplest uscale module to reconstruct the
super-resolution image from the captured deep feature:

ISR = fRM(FS + F0) ∈ R3×sH×sW , (5)

where fRM(·) is implemented by a 3×3 convolution to
squeeze the channel number C to 3s2, and a pixel shuffle
operator to transfer depth to space. s indicates the upscale
factor.



Algorithm 1: Training/Inference of CAMixer
Data: feature X, global condition Cg , window condition Cw

Result: refined feature Y
1 calculate the value: V = Cl = fPWConv (X);
2 Predictor: use conditions (Cl, Cg , Cw) to calculate metrics

(mask m, offsets ∆p, attentions Ac and As) based on Eq. 2
of main paper;

3 calculate warped feature X̃ by using offsets ∆p and bilinear
interpolation ϕ(·):

4 if training then
5 modulate mask by gumble softmax function [16]:

M = gumble softmax(m);
6 hard tokens: X̃hard = X̃ ·M, Vhard = V ·M;
7 simple tokens: Vsimple = V · (1−M);
8 else
9 calculate K by

∑
M;

10 obtain index by argsort function: I = argsort(m),
Ihard = I[: K], Isimple = I[K :];

11 hard tokens: X̃hard = X̃[Ihard ], Vhard = V[Ihard ];
12 simple tokens: Vsimple = V[Isimple];
13 end
14 calculate query and key by: Q̃ = X̃hardWq , K̃ = X̃hardWk;
15 Attention: use self-attention for complex areas:

Vhard = softmax( Q̃K̃T
√
d

)Vhard ;
16 use convolutional sptial attention for simple areas:

Vsimple = Vsimple ·As;
17 if training then
18 Vattn = Vhard +Vsimple;
19 else
20 Vattn[Ihard ] = Vhard , Vattn[Isimple] = Vsimple;
21 end
22 Convolution: calculate convolution and channel attention:

Vconv = fDWConv (Vattn) ·Ac +Vconv ;
23 project to obtain output Y = fPWConv (Vattn).

1.2. Training and Inference of CAMixer

For the proposed CAMixer, we utilize two implementations
for training and inference as shown in Algorithm 1.
Inference. For inference, as formulated in the main paper
(Eq. 4), we use the argsort to obtain the indices, and then se-
lect the top-K tokens to calculate the self-attention. Despite
directness and simplicity, this process is non-differentiable.
Training. Following DynamicViT [16], we leverage gum-
ble softmax function to generate differentiable 0-1 mask
M for training, where the index “1” represents the mask
of the tokens processed by self-attention. Moreover, gum-
ble softmax function generates one-hot tensor, of which the
expectation equals m exactly. Specifically, to enable the dy-
namical adjustment of the attention ratio γ, the dimension
of the softmax is 1 rather than 0 for m′ ∈ R

HW
M2 ×2, where

m′ is the original output from the predictor.

1.3. Training Loss

Training Loss for ODI SR. Based on LAU-Net [3] and
OSRT [17], we utilize the weighted ℓ1 loss for reconstruc-
tion. Given the input LR-HR pairs {ILR

i , IHR
i }Ni=1, this cal-

(a) ℓ1 (b) ℓratio

(c) ℓOSR (d) ℓratio

Figure 3. The loss curves for classic SR (a, b) and ODI SR (c, d).

culation can be formulated by:

ℓOSR =
1

N

N∑
i=1

∥∥∥Wj

(
IHR
i − fCAMixerSR(I

LR
i )

)∥∥∥
1
, (6)

where the Wj is the weight matrix which defines the im-
portance of each pixel according to its latitude. Given the
latitude of the p-th row in Wj is l, following [3], we calcu-
late its weight by cos( l+0.5−H/2

H π). Similar to the classic
SR task, we simply sum the ℓOSR and ℓratio as the overall
loss to train model for ODI SR.
More Discussion. We visualize the loss curves in Fig. 3
with two different tasks: classic SR and ODI SR task. Gen-
erally, for ℓratio, the curve for ODI-SR is more reasonable
and stable since 360◦ images have more plain area at high
latitude while the density of complex area is random for im-
ages from classic SR datasets. This property also induces
the difference of ℓ1 and ℓOSR , where (a) is smoothly de-
scended with fewer oscillations than (c).

1.4. Texture Inconsistency

The texture inconsistency may induce a huge performance
drop since the CAMixer dynamically selects “details” to-
kens to calculate WSA. As discussed in the main paper,
we resolve the texture inconsistency from two perspectives.
1) Design, we utilize the convolutional spatial/channel at-
tention acting as a simple alignment for attentive features.
2) Training, the network itself learns to harmonize the fea-
ture by distributing CAMixer processing varied tokens. In
Fig. 5, we offer heatmaps to show how these strategies work
to erase the potential inconsistency. Specifically, for the
model with convolutional attention, the difference between
complex and simple tokens is alleviated to a large extent



Figure 4. More visualizations of progressively classified tokens.
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Figure 5. Effects of convolutional attention and block schedule.

but still exists for uncoordinated patches. Then, as (b) illus-
trates, CAMixers of different layers hierarchically erase the
inconsistency.

2. More Results
2.1. More Visualization of Predicted Mask

In Fig. 4, we present more visual results of the predicted
mask with γ=0.5. For images with plenty of plain areas, our
CAMixer can adopt eligible partitions for SA/Conv. How-
ever, two defects remain to be solved in our future work.
1) The fixed γ is not flexible for images with excessively
complex/simple textures. 2) The partition is learned from
data without guidance, while some plain areas, e.g., human
face, deserve more “attention”. In the future, we will con-
tinue to refine CAMixer with the adjustable ratio γ and the
human-guiding partition.

2.2. Runtime Performance

Initially, we show the runtime percentage for components
of CAMixer in Fig. 6. Obviously, the self-attention branch
is the main barrier (67.8%) that constrains efficiency. Thus,
CAMixer integrates content-aware routing to reduce the la-
tency for attention. We validate the runtime performance
of the proposed CAMixer on efficient SR tasks with the
same setting as the NTIRE ESR Challenge1 [9]. In Tab. 1,

1https://github.com/ofsoundof/NTIRE2022_ESR

Device Training Inference
γ = 1.00 γ = 0.50 γ = 0.25

#MAdds - 77.9G 53.8G (69%) 43.0G (55%)
CPU† 11.6s 13.2s 9.6s (73%) 9.0s (68%)
Tesla T4 214.9ms 227.7ms 180.6ms (79%) 177.3ms (78%)
Tesla A10 106.3ms 113.4ms 97.4ms (86%) 91.6ms (81%)
Tesla V100 95.3ms 97.4ms 90.2ms (92%) 88.7ms (91%)

Table 1. Runtime performance for CAMixerSR with various γ
on multiple devices. Mult-Adds (MAdds) are measured under the
setting of upscaling the image to 1280×720. The latency is the
average runtime for single image SR on Urban100 [5]. “†” uses
Set5 [1] and single core of Intel Xeon Platinum 8336C@2.3GHz.

Figure 6. Runtime percentage of varied components (predictor,
attention, convolution, and others) of CAMixer (γ = 1.0).

γ = 0.0 γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5

γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 γ = 1.0 HR

Figure 7. Visual comparison for varied attention ratio γ.

we examine our CAMixerSR with varied devices on Ur-
ban100 [5]. We can observe that the training mode is
slightly faster than the inference (γ = 1.00) due to the in-
ference executing an extra selection operation to classify to-
kens. For latency, when testing on CPU or weak GPU (e.g.,
T4), the latency reduction is similar to MAdds, i.e., 30% for
γ = 0.5 and 40% for γ = 0.25. Due to device limitations,
the consumer-grade GPUs, e.g. GTX and RTX series, are
not included, which may attain larger improvements than
T4. For more powerful GPU (e.g., V100), the runtime de-
crease is rather limited, less than 10%. The results indicate
that, on devices with low FLOPS barriers, our CAMixer can
effectively save the computations and running time.

https://github.com/ofsoundof/NTIRE2022_ESR


Table 2. Quantitative comparison (PSNR) for CAMixerSR-Small/Medium/Base with varied ratio γ on F2K, Test2K, Test4K, and Test8K.

Ratio γ #Params F2K #FLOPs Test2K #FLOPs Test4K #FLOPs Test8K #FLOPs
1.00 29.12 894M (100%) 26.26 894M (100%) 27.73 894M (100%) 33.66 894M (100%)
0.50 29.08 652M (73%) 26.24 652M (73%) 27.70 652M (73%) 33.63 652M (73%)
0.25 28.98 532M (59%) 26.18 532M (59%) 27.63 532M (59%) 33.55 532M (59%)Sm

al
l

0.00

351K

28.83 410M (46%) 26.10 410M (46%) 27.52 410M (46%) 33.43 410M (46%)
1.00 29.20 1.37G (100%) 26.32 1.37G (100%) 27.80 1.37G (100%) 33.72 1.37G (100%)
0.50 29.18 1.03G (75%) 26.30 1.03G (75%) 27.79 1.03G (75%) 33.71 1.03G (75%)
0.25 29.11 858M (62%) 26.26 858M (62%) 27.74 858M (62%) 33.66 858M (62%)

M
ed

iu
m

0.00

535K

28.92 686M (50%) 26.15 686M (50%) 27.59 686M (50%) 33.50 686M (50%)
1.00 29.35 1.96G (100%) 26.40 1.96G (100%) 27.89 1.96G (100%) 33.81 1.96G (100%)
0.50 29.32 1.49G (76%) 26.39 1.49G (76%) 27.87 1.49G (76%) 33.81 1.49G (76%)
0.25 29.26 1.26G (65%) 26.35 1.26G (65%) 27.83 1.26G (65%) 33.77 1.26G (65%)B

as
e

0.00

765K

29.08 1.03G (53%) 26.23 1.03G (53%) 27.70 1.03G (53%) 33.63 1.03G (53%)

Table 3. Quantitative comparison (average PSNR/SSIM, Parameters, and Mult-Adds) with varied ratio γ for efficient image SR. Mult-Adds
(MAdds) are measured under the setting of upscaling the image to 1280×720. “†” indicates using the DF2K [11] training set.

Ratio γ Scale #Params #MAdds Set5 [1] Set14 [18] BSD100 [14] Urban100 [5] Manga109 [15]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1.00 ×2 294.1G 38.24 0.9614 34.00 0.9217 32.34 0.9017 32.97 0.9352 39.34 0.9782
0.50 ×2 746K 205.2G 38.23 0.9613 34.00 0.9214 32.34 0.9016 32.95 0.9348 39.32 0.9781
0.25 ×2 160.7G 38.16 0.9610 33.90 0.9206 32.31 0.9010 32.78 0.9329 39.25 0.9779
1.00† ×2 294.1G 38.28 0.9614 34.04 0.9218 32.37 0.9021 33.04 0.9364 39.50 0.9788
0.50† ×2 746K 205.2G 38.27 0.9614 34.03 0.9215 32.36 0.9019 33.01 0.9357 39.49 0.9787
0.25† ×2 160.7G 38.21 0.9611 33.96 0.9208 32.33 0.9013 32.83 0.9336 39.43 0.9785
1.00 ×4 77.9G 32.51 0.8992 28.82 0.7873 27.73 0.7421 26.65 0.8024 31.20 0.9170
0.50 ×4 765K 53.8G 32.51 0.8988 28.82 0.7870 27.72 0.7416 26.63 0.8012 31.18 0.9166
0.25 ×4 43.0G 32.45 0.8978 28.78 0.7856 27.69 0.7401 26.51 0.7966 31.06 0.9148
1.00† ×4 77.9G 32.60 0.9003 28.91 0.7889 27.78 0.7434 26.80 0.8068 31.42 0.9168
0.50† ×4 765K 53.8G 32.58 0.9000 28.90 0.7885 27.77 0.7430 26.77 0.8055 31.41 0.9171
0.25† ×4 43.0G 32.47 0.8986 28.84 0.7870 27.73 0.7413 26.63 0.8005 31.31 0.9168

HR IMDN [6] FDIWN [4] CAMixerSR-O CAMixerSR†-O

078 from Urban100 ESRT [13] SwinIR [10] NGswin [2] CAMixerSR CAMixerSR†

Figure 8. Visual comparison of CAMixerSR with other methods for ×4 task on Urban100 dataset.

2.3. Large-Image SR

In Tab. 2, we offer more quantitative results of CAMixerSR
with varied γ on the Large-Image SR task. In the main
paper, we manually set γ = 0.5 to attain the promising
trade-offs for three tasks. However, for the 8K task, further
decreasing the ratio to 0.25 can save an additional 115M
(10%) calculations while inducing only 0.04dB drops. We
also examine the models without using self-attention (γ =
0). In detail, the non-attention models suffer about 0.3dB
PSNR drops. In Fig. 9, we offer more visual compar-

isons between our CAMixerSR with other methods, where
CAMixerSR obtains better restoration quality. These re-
sults indicate that only details need more “attention”, and
we only need to pay “attention” to 25%-50% areas.

2.4. Lightweight SR

In Tab. 3 and Fig. 7, we supply the quantitative and qualita-
tive results of CAMixerSR with varied γ on the Lightweight
SR task. Different from Sec. 2.3, the CAMixer with γ =
0.25 encounters more extensive PSNR drops (0.06-0.14dB)



HR SRResNet-O [8] RCAN-O [20] IMDN-O [6] CAMixerSR-O

1303 from Test4K LR SRResNet-ClassSR RCAN-ClassSR SwinIR-L-O [10] CAMixerSR

HR SRResNet-O [8] RCAN-O [20] IMDN-O [6] CAMixerSR-O

1334 from Test4K LR SRResNet-ClassSR RCAN-ClassSR SwinIR-L-O [10] CAMixerSR

HR SRResNet-O [8] RCAN-O [20] IMDN-O [6] CAMixerSR-O

1341 from Test4K LR SRResNet-ClassSR RCAN-ClassSR SwinIR-L-O [10] CAMixerSR

HR SRResNet-O [8] RCAN-O [20] IMDN-O [6] CAMixerSR-O

1261 from Test2K LR SRResNet-ClassSR RCAN-ClassSR SwinIR-L-O [10] CAMixerSR

Figure 9. Visual comparison of CAMixerSR with other methods for ×4 task on Test2K and Test4K dataset.

on benchmark datasets. Moreover, we train our CAMix-
erSR with a large-scale training set, DF2K [11] to explore
and exploit the maximum representation capability. Similar
to previous work [10], using DF2K significantly improves
the restoration quality for the baseline model (γ = 1.0). In
detail, the PSNR increases by 0.22dB on Manga109 [15].

More importantly, for models trained with large-scale sets,
reducing the attention area (γ) can also maintain remark-
able performance as using small-scale sets. In conclu-
sion, improving the training schedule would not affect the
CAMixer, showing its generality and robustness.
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