
Supplementary for CPR-Coach: Recognizing Composite Error Actions
based on Single-class Training

1. Supplementary for the CPR-Coach

Comparison with Other Datasets. Table 3 compares
CPR-Coach with other existing medical action analysis
datasets. Most of the traditional research is to rate the ac-
tion of the subjects. For example, Expert/Novice in [35] and
Expert/Intermediate/Novice in [37]. These methods model
the assessment task as simple two or three-category classi-
fication problems. At the same time, the diversity of these
datasets is limited. These research only contains specific
two or three-type operations such as Suturing, Knot-Tying
and Needle-Passing in [8]. Unfortunately, most researchers
do not release the proposed datasets, which limits the de-
velopment of the field of medical action assessment. Most
open-source research [1, 11, 12, 16, 17, 19, 20, 22, 25, 27,
29, 33, 34] focus on surgical workflow recognition without
assessing the quality of actions. The CPR-Coach dataset
contains rich fine-grained incorrect action categories, vari-
ous visual perspectives and sufficient video samples. The
CPR-Coach dataset will be released later to enhance re-
search in medical skill analysis tasks.
Details of the CPR-Coach Dataset. Figure 3 shows the
filtering strategy in paired-composite errors by taking ten
error actions as the main cases. All deleted combinations
are marked. In Figure 3(a), errors about hands cannot co-
occur, so two co-occurrences are deleted. In Figure 3(c), it
is unlikely that errors such as Excessive Pressing and Bend-
ing Arms will occur when the Single Hand exists, and these
combinations are deleted. Note that in Figure 3(h), the In-
sufficient Pressing error may combine with any other errors
so that all combinations can be received. All deletions have
been carefully considered and carefully reviewed by emer-
gency doctors. Figure 5 shows all combinations of the 10
triple- and 5 quadruple-composite error actions studied in
this paper. Figure 4 shows all the composite error actions in
detail. Note that temporal-related errors such as Insufficient
Pressing, Slow Frequency, and Random Position Pressing
are not evident in images.

2. Results on SOTA Video Backbones

The core contribution of this study is NOT to create a
novel/SOTA HAR model but to build a better composite

Model Config Pre-train
Single-class Recogn.

Top-1 Top-3

Vi-ViT [2] base-16x2 Kinetics-400 0.9814 1.0000
MViTv2 [13] base-32x3x1 Kinetics-400 0.9867 0.9980

Video Swin [15] base-32x2x1 Kinetics-400 0.9918 1.0000

Model Config Pre-train
Direct Migration

mAP mmit mAP

Vi-ViT [2] base-16x2 Kinetics-400 0.5582 0.6651
MViTv2 [13] base-32x3x1 Kinetics-400 0.5715 0.6740

Video Swin [15] base-32x2x1 Kinetics-400 0.5696 0.6701

Table 1. Composite error action recognition performance on SOTA
video backbones.

Model mAP ∆ mmit mAP ∆

Vi-ViT [2] 0.5582 — 0.6651 —
w/ ImagineNet-FC 0.6587 ↑ 10.05% 0.7523 ↑ 8.72%

MViTv2 [13] 0.5715 — 0.6740 —
w/ ImagineNet-FC 0.6869 ↑ 11.54% 0.7461 ↑ 7.21%

Video Swin [15] 0.5696 — 0.6701 —
w/ ImagineNet-FC 0.7082 ↑ 13.86% 0.7638 ↑ 9.37%

Table 2. Performance comparison between direct migration and
ImagineNet-FC on SOTA video backbones.

error detector through existing models under the Single-
class Training & Multi-class Testing settings. Therefore,
we focus on exploring the performance of some classic ac-
tion recognition frameworks in the main text. These frame-
works are concise and easy to replicate. For the complete-
ness of the research, we supplement the experiments with
Video Swin Transformer [15], Vi-ViT [2], and MViTv2
[13] as SOTA video backbones. All models are trained
with Cross-Entropy loss. Table 1 lists the performance of
three SOTA video backbones under the single-error setting
and direct migration setting. These powerful backbones are
able to handle error recognition tasks well, but they can-
not achieve satisfactory performance under composite error
settings. This is are consistent with the conclusions in Table
3&4 in the main text. Table 2 shows that with the help of the
proposed ImagineNet, all three backbones achieve signifi-
cant performance improvements. Especially, performance
of the Video Swin Transformer has improved by 13.86% in
mAP and 9.37% in mmit mAP, respectively. The improve-
ment in performance confirms the effectiveness of the pro-
posed framework.



Research Theme Dataset #Actions Modality #Videos #Views Evaluation Type Available

Skills in Laparoscopic Surgery
FLS-ASU [35] 1 RGB 28 2 Skill Rating ✘

Zhang et al. [36] 1 RGB 546 1 Skill Rating ✘
Chen et al. [5] 3 RGB 720 2 Skill Rating ✘

Basic Surgical Skills Assessment
Sharma et al. [23] 2 RGB 33 1 OSATA Score ✘

Bettadapura et al. [4] 3 RGB 64 2 Skill Rating ✘
Zia et al.[37] 2 RGB 104 1 Skill Rating ✘

Skills on Da Vinci Surgical Systems MISTIC-SL [6] 4 RGB+Kinematics 49 1 Skill Rating ✘
JIGSAWS [8] 3 RGB+Kinematics 103 1 Skill Rating ✔

Exercise Rehabilitation Assessment UI-PRMD [26] 10 RGB+Kinematics 1,000 1 Skill Rating ✔

Surgical Workflow Recognition

Cataract-101 [22] 10 RGB 101 1 Workflow Recogn. ✔
Hei-Chole [29] 7 RGB 33 1 Workflow Recogn. ✔

HeiCo [17] 0 RGB 30 1 Workflow Recogn. ✔
RARP45 [27] 8 RGB 45 1 Workflow Recogn. ✔
Cholec80 [25] 7 RGB 80 1 Workflow Recogn. ✔

GastricBypass337 [33] 10 RGB 337 1 Workflow Recogn. ✘
Gastrectomy461 [34] 8 RGB 461 1 Workflow Recogn. ✘

Nephrec9 [19] 10 RGB 1,262 1 Workflow Recogn. ✔
CATARACTS [1] 21 RGB 50 1 Tools Recogn. ✔
CholecT50 [20] 10 RGB 50 1 Triplet Recogn. ✔
Laparo425 [12] 9 RGB 425 1 Early Recogn. ✘
PETRAW [11] 6 RGB+Kinematics 90 1 Workflow Recogn. ✔

DESK [16] 7 RGB+Kinematics 2,897 1 Workflow Recogn. ✔

Cardiopulmonary Resuscitation CPR-Coach (Ours) 14+74 RGB+Flow+Pose 5,664 4 Error Recogn. ✔

Table 3. Comparison with existing medical action analysis datasets. Due to the inheritance of these research, we classify these datasets
according to different research themes.

3. Supplementary Experimental Results

Supplementary Experiment of TSN w/ ImagineNet. Ta-
ble 4 lists the performance and FLOPs comparison of the
proposed three ImagineNet models and their variants based
on the TSN [30]. The ImagineNet-SA outperforms the other
two models, which is consistent with the results in Table 6
in the main text. Table 5 lists the cross modality results on
RGB and pose information based on the TSN. The perfor-
mance and latency are consistent with the results on TSM.

t-SNE Visualization on Set-2. Page 7 summarizes the ex-
perimental results of TSN and TSM, and Page 8 summa-
rizes the results of TPN and ST-GCN. Results in Table 6&7
suggest that the ImagineNet-FC significantly improves the
network’s performance on composite error action recogni-
tion tasks. Figure 6&7 show the t-SNE visualization of TSN
and TSM, respectively. Large intervals are marked in dot-
ted lines for clarity. Apparent margins reveal the effective-
ness of the proposed ImagineNet-FC. Figure 8&9 show the
t-SNE visualization of TSN and TSM, respectively. The
performance improvement can be observed on TPN but is
not apparent on ST-GCN. This is consistent with the perfor-
mance comparison in Table 7.

System Demonstration Set-2. The proposed CPR compos-
ite error action recognition system is shown in Figure 10,
11, 12, 13. The demonstration video was also uploaded as
part of the supplementary materials.

4. CBP and BLOCK Models
As the representative of bilinear pooling aggregation

methods, CBP [7] and BLOCK [3] models are equipped
with the natural characteristics of aggregating features. We
compared the above two methods in 5.4 Ablation Studies
with the proposed random weighted summation mechanism
(Figure 2). In the 5.5 Cross Modality Studies, the perfor-
mance of ImagineNet-CA is compared with these models.
Limited by space, these methods are not introduced in detail
in the main text.

The brief introduction and implementation details of
these methods are as follow.
Compact Bilinear Pooling. Bilinear pooling is the merging
operation of a series of local image descriptors. Given a set
of local descriptors X = (x1, · · · ,x|X |,xs ∈ RC), the
bilinear pooling generates a global representation through

B(X ) =
∑
s∈S

xsx
T
s . (1)

Given two sets of local descriptors: X and G, the dot prod-
uct of two features is representated as

⟨vec(B(X )), vec(B(G))⟩ =
∑
s∈S

∑
g∈G

⟨xs,yg⟩2. (2)

The CBP method [7] aims to find a low dimensional projec-
tion function Φ(x) ∈ Rd, where d ≪ c2 and satisfy∑

s∈S

∑
g∈G

⟨xs,yg⟩2 ≈
∑
s∈S

∑
g∈G

⟨Φ(xs),Φ(yg)⟩. (3)
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Figure 1. Demonstration of the ImagineNet-FC handles two and
three inputs.

The low-dimensional approximation operation dramatically
reduces the computational complexity. Tensor Sketch Pro-
jection [21] is adopted as the dimension reduction method.
Block-superdiagonal Tensor Decomposition. In [3], Ben-
younes et al. introduced bilinear pooling methods to per-
form multimodal fusion in the VQA and VRD tasks. A bi-
linear model takes two features as input and projects them
into a k-dimensional space with tensor products

b = T × x× y, (4)
where x ∈ RC1 , y ∈ RC2 , and b ∈ RK . ∀k ∈ [1,K],

bk =

C1∑
i=1

C2∑
j=1

T ijk · xi · yj . (5)

To reduce the number of parameters and computational
complexity, T is decomposed through block-term decom-
position in rank(L,M,N) terms:

T =

R∑
r=1

Dr ×Ar ×Br ×Cr, (6)

where ∀r ∈ [1, R], Dr ∈ RL×M×N , Ar ∈ RC1×L, Br ∈
RC2×M , and Cr ∈ RK×N . By adopting structural con-
straint to T , the projection process is parametrized through
a block-superdiagonal tensor Dbd ∈ RLR×MR×NR.

5. Evaluation Metrics
Due to space limitations, we did not provide a specific

introduction to metrics in the main text. The mAP adopted
in this paper refers to the macro mAP in [18], which denotes
the average of the mean average precision for each class:

mAP =

∑C
i=1 APi

C
. (7)

The mmit mAP refers to the micro mAP in [18], which de-
notes the mean average precision over all videos:

mmit mAP =

∑N
j=1 APj

N
. (8)
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Figure 2. Visualization of the vanilla additive mechanism and the
proposed weighted feature summation mechanism.

Note that APi denotes the average precision over the i-th
class, while APj denotes the average precision for the j-th
sample.

6. Limitations and Discussions
As the first study on fine-grained error action recogni-

tion and AQA in CPR training, this work inevitably has
some limitations. The diversity and complexity of the CPR-
Coach dataset remains to be improved. Standard CPR con-
sists of several stages (e.g., electric defibrillation, artificial
respiration), while only the external cardiac compression
is studied due to the time and scale limitation. Neverthe-
less, the CPR-Coach has reached 450GB and 2.2M frames,
which allows us to make some preliminary algorithm ex-
ploration. We look forward to some valuable and promising
research directions in the future. We hope these prospects
will bring some inspiration to the readers.

• Diversity & Complexity of the Dataset. The CPR-
Coach dataset only considers the external cardiac compres-
sion action in CPR. In the future, we will continue to co-
operate with the training center of the hospital to enrich the
dataset. There is still huge potential exploration space for
complex and multi-stage medical action analysis.

• Data Generation. The data acquisition of medical ac-
tion datasets is highly professional, which makes it chal-
lenging to expand the scale of datasets. Deep Generative
Models (DGMs) such as GAN [9] and Diffusion Models
[10] have achieved excellent performance on image/video
generation tasks. It will be very interesting to combine
these generative models with medical action analysis sce-
narios to generate high-quality, large-scale datasets in dif-
ferent modalities.

• Combination with Language Models. Based on
CPR-Coach, this paper design a discriminative Coach with
the ability to identify single and composite errors. How-
ever, a real coach can give verbal guidance and advice to
beginners. By combining language models [28] with the
assessment tasks, we will design a more perfect and human-
centered system like a real coach.
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Figure 3. Ten error actions are selected as the main class for demonstrating the selection strategy. All combinations of each main class are
enumerated and listed in detail. Impossible co-occurrences in each subfigure are flagged via red delete symbols. Three omitted actions also
follow this selection strategy.
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(a) 14 Single-class Actions

(b) 59 Paired-composite Error Actions

& &

O
ve

rla
p 

H
an

ds
 &

Be
nd

in
g 

Ar
m

s 

O
ve

rla
p 

H
an

ds
 &

Ti
lti

ng
 A

rm
s 

O
ve

rla
p 

H
an

ds
 &

Ju
m

p 
Pr

es
si

ng
 

O
ve

rla
p 

H
an

ds
 &

Sq
ua

tti
ng

  

O
ve

rla
p 

H
an

ds
 &

 S
ta

nd
in

g

O
ve

rla
p 

H
an

ds
 &

 W
ro

ng
 P

os
iti

on
   

 

O
ve

rla
p 

H
an

ds
 &

 In
su

ffi
ci

en
t P

re
ss

in
g 

   
 

O
ve

rla
p 

H
an

ds
 &

 S
lo

w
 F

re
qu

en
cy

   
   

O
ve

rla
p 

H
an

ds
 &

 E
xc

es
si

ve
 P

re
ss

in
g 

   
   

O
ve

rla
p 

H
an

ds
 &

 R
an

do
m

 P
os

iti
on

 P
re

ss
in

g

& & & & & & &

& &

C
le

nc
hi

ng
 H

an
ds

 &
Ju

m
p 

Pr
es

si
ng

 

C
le

nc
hi

ng
 H

an
ds

 &
 S

qu
at

tin
g

& & && &&& &

C
le

nc
hi

ng
 H

an
ds

 &
 S

ta
nd

in
g

C
le

nc
hi

ng
 H

an
ds

 &
 W

ro
ng

 P
os

iti
on

 

C
le

nc
hi

ng
 H

an
ds

 &
 In

su
ffi

ci
en

t P
re

ss
in

g

C
le

nc
hi

ng
 H

an
ds

 &
 S

lo
w

 F
re

qu
en

cy
  

C
le

nc
hi

ng
 H

an
ds

 &
 E

xc
es

si
ve

 P
re

ss
in

g

Si
ng

le
 H

an
d 

&
 J

um
p 

Pr
es

si
ng

Si
ng

le
 H

an
d 

&
 S

qu
at

tin
g

Si
ng

le
 H

an
d 

&
St

an
di

ng

&&&&&&&&&&

&

& & &&

&& &

& & && &

& & & & & &

& & & & & & &

& & &

Si
ng

le
 H

an
d 

&
W

ro
ng

 P
os

iti
on

 

Si
ng

le
 H

an
d 

&
In

su
ffi

ci
en

t P
re

ss
in

g 

Si
ng

le
 H

an
d 

&
Sl

ow
 F

re
qu

en
cy

 

Si
ng

le
 H

an
d 

&
R

an
do

m
 P

os
iti

on
 P

re
ss

in
g 

Be
nd

in
g 

Ar
m

s 
&

Ti
lti

ng
 A

rm
s 

Be
nd

in
g 

Ar
m

s 
&

Ju
m

p 
Pr

es
si

ng
 

Be
nd

in
g 

Ar
m

s 
&

 S
qu

at
tin

g 

Be
nd

in
g 

Ar
m

s 
&

St
an

di
ng

 

Be
nd

in
g 

Ar
m

s 
&

W
ro

ng
 P

os
iti

on
 

Be
nd

in
g 

Ar
m

s 
&

In
su

ffi
ci

en
t P

re
ss

in
g 

Be
nd

in
g 

Ar
m

s 
&

Sl
ow

 F
re

qu
en

cy
 

Be
nd

in
g 

Ar
m

s 
& 

R
an

do
m

 P
os

iti
on

 P
re

ss
in

g 

Ti
lti

ng
 A

rm
s 

&
Sq

ua
tti

ng
 

Ti
lti

ng
 A

rm
s 

&
St

an
di

ng
 

Ti
lti

ng
 A

rm
s 

&
W

ro
ng

 P
os

iti
on

 

Ti
lti

ng
 A

rm
s 

&
In

su
ffi

ci
en

t P
re

ss
in

g 

Ti
lti

ng
 A

rm
s 

&
Sl

ow
 F

re
qu

en
cy

Ti
lti

ng
 A

rm
s 

&
R

an
do

m
 P

os
iti

on
 P

re
ss

in
g 

Ju
m

p 
Pr

es
si

ng
 &

Sq
ua

tti
ng

 

Ju
m

p 
Pr

es
si

ng
 &

St
an

di
ng

 

Ju
m

p 
Pr

es
si

ng
 &

W
ro

ng
 P

os
iti

on
 

Ju
m

p 
Pr

es
si

ng
 &

In
su

ffi
ci

en
t P

re
ss

in
g 

Ju
m

p 
Pr

es
si

ng
 &

Sl
ow

 F
re

qu
en

cy
 

Ju
m

p 
Pr

es
si

ng
 &

Ex
ce

ss
iv

e 
Pr

es
si

ng
 

Sq
ua

tti
ng

 &
W

ro
ng

 P
os

iti
on

 

Sq
ua

tti
ng

 &
In

su
ffi

ci
en

t P
re

ss
in

g 

Sq
ua

tti
ng

 &
Sl

ow
 F

re
qu

en
cy

 

Sq
ua

tti
ng

 &
Ex

ce
ss

iv
e 

Pr
es

si
ng

 

Sq
ua

tti
ng

 &
R

an
do

m
 P

os
iti

on
 P

re
ss

in
g 

St
an

di
ng

 &
W

ro
ng

 P
os

iti
on

 

St
an

di
ng

 &
In

su
ffi

ci
en

t P
re

ss
in

g 

St
an

di
ng

 &
Sl

ow
 F

re
qu

en
cy

 

St
an

di
ng

 &
Ex

ce
ss

iv
e 

Pr
es

si
ng

 

St
an

di
ng

 &
R

an
do

m
 P

os
iti

on
 P

re
ss

in
g 

W
ro

ng
 P

os
iti

on
 &

In
su

ffi
ci

en
t P

re
ss

in
g 

W
ro

ng
 P

os
iti

on
 &

Sl
ow

 F
re

qu
en

cy
 

In
su

ffi
ci

en
t P

re
ss

in
g 

&
Sl

ow
 F

re
qu

en
cy

 

In
su

ffi
ci

en
t P

re
ss

in
g 

& 
Ex

ce
ss

iv
e 

Pr
es

si
ng

 

In
su

ffi
ci

en
t P

re
ss

in
g 

&
R

an
do

m
 P

os
iti

on
 P

re
ss

in
g 



O
ve

rla
p 

H
an

ds
 &

 B
en

di
ng

 A
rm

s 
& 

Ju
m

p 
Pr

es
si

ng

Be
nd

in
g 

Ar
m

s 
& 

W
ro

ng
 P

os
iti

on
 

& 
O

ve
rla

p 
H

an
ds

Be
nd

in
g 

Ar
m

s 
& 

O
ve

rla
p 

H
an

ds
 

& 
In

su
ffi

ci
en

t P
re

ss
in

g 

Ti
lti

ng
 A

rm
s 

& 
Ju

m
p 

Pr
es

si
ng

 
& 

O
ve

rla
p 

H
an

ds

W
ro

ng
 P

os
iti

on
 &

 O
ve

rla
p 

H
an

ds
 

& 
Ti

lti
ng

 A
rm

s

O
ve

rla
p 

H
an

ds
 &

 T
ilt

in
g 

Ar
m

s 
& 

In
su

ffi
ci

en
t P

re
ss

in
g 

Be
nd

in
g 

Ar
m

s 
& 

Ju
m

p 
Pr

es
si

ng
& 

In
su

ffi
ci

en
t P

re
ss

in
g 

Sq
ua

tti
ng

 &
 T

ilt
in

g 
Ar

m
s 

& 
W

ro
ng

 P
os

iti
on

 

St
an

di
ng

 &
 E

xc
es

si
ve

 P
re

ss
in

g 
& 

O
ve

rla
p 

H
an

ds
 

& & & & & & & & & & & & & & & & & & & &

St
an

di
ng

 &
 O

ve
rla

p 
H

an
ds

 
& 

In
su

ffi
ci

en
t P

re
ss

in
g 

(c) 10 Triple-composite Error Actions

(d) 5 Quadruple-composite Error Actions
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Figure 4. All single-class and composite error examples studied in this paper. Marks and annotations are also listed in detail.
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Figure 5. All combinations of the 10 triple- and 5 quadruple-composite error actions studied in this paper.

Model Variants GFLOPs mAP mmit mAP

ImagineNet-FC FC 0.001 0.6259 0.6893

ImagineNet-SA
SA 0.068 0.6426 0.7049

SAx2 0.136 0.6450 0.7131
SAx3 0.203 0.6436 0.7086

w/o PosEmb 0.068 0.6305 0.6906

ImagineNet-CA
CA 0.068 0.6307 0.6933

CA+SA 0.136 0.6347 0.7005
CA+SAx2 0.203 0.6335 0.7046

w/o PosEmb 0.068 0.6281 0.6953

Table 4. Performance and FLOPs comparison of the proposed three ImagineNet models and their variants based on the TSN.

Model Modality Latency (ms)↓ mAP mmit mAP

TSN [30] RGB – 0.5598 0.6143
ST-GCN [31] Pose – 0.5776 0.6692

Two-Stream [24] RGB+Pose 0.1426 0.5915 0.6823
CBP [7] RGB+Pose 0.3032 0.7066 0.7460

BLOCK [3] RGB+Pose 1.254 0.7094 0.7597

w/ ImagineNet-CA RGB+Pose 0.1612 0.7133 0.7641

Table 5. Cross modality studies on RGB and Pose information.



Model mAP ∆ mmit mAP ∆

TSN [30] 0.5598 — 0.6143 —
w/ ImagineNet-FC 0.6259 ↑ 6.61% 0.6893 ↑ 8.50%

TSM [14] 0.5662 — 0.6618 —
w/ ImagineNet-FC 0.7053 ↑ 13.91% 0.7566 ↑ 9.48%

Table 6. Performance comparison between direct migration and ImagineNet-FC on TSN and TSM.

(a) TSN (b) TSN w/ ImagineNet
Figure 6. t-SNE feature visualization comparison of TSN on CPR-Coach Set-2.

(a) TSM (b) TSM w/ ImagineNet.
Figure 7. t-SNE feature visualization comparison of TSM on CPR-Coach Set-2.



Model mAP ∆ mmit mAP ∆

TPN [32] 0.6250 — 0.7016 —
w/ ImagineNet-FC 0.7094 ↑ 8.44% 0.7620 ↑ 6.04%

ST-GCN [31] 0.5776 — 0.6692 —
w/ ImagineNet-FC 0.6404 ↑ 6.28% 0.7115 ↑ 4.23%

Table 7. Performance comparison between direct migration and ImagineNet-FC on TPN and ST-GCN.

(a) TPN (b) TPN w/ ImagineNet
Figure 8. t-SNE feature visualization comparison of TPN on CPR-Coach Set-2.
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(b) ST-GCN w/ ImagineNet
Figure 9. t-SNE feature visualization comparison of ST-GCN on CPR-Coach Set-2.



Figure 10. Single error actions recognition results.

Figure 11. Paired-composite error actions recognition results.



Figure 12. Triple-composite error actions recognition results.

Figure 13. Multi perspective recognition results.
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