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A. Overview

To enhance the completeness of our experiments, additional
analyses on the generalization capabilities of the MLLM
under various domain shifts are included in the supplemen-
tary material. These analyses are conducted from two per-
spectives: image-domain and text-domain, specifically il-
lustrating the enhancement in the multimodal understand-
ing capabilities of our approach when dealing with domain-
shift scenarios. The following aspects are included in our
supplementary material.

• Supplementary Experimental Analysis
- Generalization capabilities in text-domain shifts
- Generalization capabilities in image-domain shifts
- Generalization capabilities in multimodal-domain shifts
- Comparison complementary
- Hyperparameter discussion

• Additional Visualization Results
- Visualization results in text-domain shifts
- Visualization results in image-domain shifts
- Visualization results in multimodal-domain shifts

• Expanded Related Work
- Expanded related work in MLLMs
- Expanded related work in Cloud-Device Collaborative
Learning
- Expanded related work in Continual Domain Adapta-
tion.

• Demo Video and Dataset

B. Supplementary Experimental Analysis

B.1. Generalization capabilities in text-domain
shifts

To validate the enhancement of the generalization perfor-
mance of MLLMs deployed on the device-side by our
method, we employed the VQAv2-to-AOKVQA to simulate
text-domain distribution shifts in the real world. Initially,
both the pocket-size MLLM on device-side and the teacher
MLLM in the cloud were fine-tuned using the VQAv2
dataset. Subsequently, we utilized the AOKVQA dataset
for testing, aiming to mimic scenarios in the open world
where the image-domain remains largely unchanged while
the text-domain input varies. The results, as presented in the
main text, distinctly show that our approach demonstrates
a notable advantage in enhancing the continual generaliza-
tion capability of multimodal large models amidst chang-
ing text-domain inputs, compared to other recent domain-
adaptation and knowledge distillation methods.

B.2. Generalization capabilities in image-domain
shifts

To assess the enhancement of generalization performance
in device-side deployed MLLMs by our method, we uti-
lized the VQAv2-IDS to simulate image-domain distribu-
tion shifts in the real world. Initially, both the device-side
pocket-size MLLM and the cloud-based teacher MLLM
were fine-tuned using the VQAv2 training dataset. We then
constructed the VQAv2-IDS dataset to emulate scenarios
in the open world where the text-domain remains constant
while the image-domain undergoes significant distribution
shifts. Specifically, we modified 2,000 of the most diffi-
cult instances in VQAv2 test images by randomly introduc-
ing natural elements like rain, snow, and fog, and adjusting
lighting conditions, creating the VQAv2-image-domain-
shift (VQAv2-IDS) test image dataset. Subsequently, with-
out altering the text-domain inputs of the VQAv2 test
data, we replaced the image-domain with VQAv2-IDS for
comparison against recent state-of-the-art (SOTA) domain-
adaptation and knowledge distillation methods, as shown
in Table 1. It is evident that the source-only MLLM de-
ployed on device, constrained by its parameter size, exhibits
weaker generalization capabilities for inputs with signifi-
cant image domain shifts. In contrast, our method rapidly
improves the performance of device-deployed MLLMs,
achieving sustained generalization.

B.3. Generalization capabilities in multimodal-
domain shifts

To validate the enhanced generalization performance of
our method for MLLMs deployed on the device-side, we
utilized the VQAv2-to-AOKVQA-IDS dataset to simulate
multimodal-domain distribution shifts in the real world. Ini-
tially, both the pocket-size MLLM at the device-side and
the cloud-based teacher MLLM were fine-tuned using the
VQAv2 training dataset. In the testing phase, we employed
images with image-domain shifts and used AOKVQA’s in-
put text as the input for the other modality. This ap-
proach helped establish a multimodal domain gap with the
training data, simulating multimodal domain shifts in the
open world. The VQAv2-to-AOKVQA-IDS dataset en-
compasses images with significant image-domain shifts and
texts with notable text-domain shifts. Based on this, we
conducted a series of comparative experiments, the results
of which are shown in Table 2. Our method effectively
improves the generalization performance of device-side de-
ployed MLLMs in handling multimodal-domain shifts. For
scenarios difficult to comprehend by source-only models,



Table 1. Persistent generalization capability on VQAv2-IDS (image-domain shift). During the training phase, we fine-tuned the
MLLM using the VQAv2 dataset. For testing, we employed a newly constructed dataset, VQAv2-IDS, which introduces random variations
of rain, snow, fog, and lighting adjustments to the images while retaining the original VQAv2 question information. The VQAv2-IDS
dataset represents image-domain alterations designed to simulate various environmental changes within the image domain in an open-
world setting. DA is VQA accuracy (%) calculated following [1] under direct answers. Gain (%) refers to the accuracy improvement
compared with the source-only method.

Time t
Round 1st 2nd 3rd MeanDA GainDA

Source-only [2] 35.47 35.47 35.47 35.47 /
TENT-continual [3] 36.04 36.20 35.86 36.03 +0.56
CoTTA [4] 35.52 35.94 35.43 35.63 +0.16
PKD [5] 38.06 38.09 38.05 38.07 +2.6
ChannelWiseDivergence [6] 38.40 38.07 38.60 38.36 +2.89
Ours (CD-CCA) 41.41 41.49 41.64 41.51 +6.04

Table 2. Persistent generalization capability on VQAV2-to-AOKVQA-IDS (multimodal-domain shift). During the training phase, we
fine-tuned the MLLM using the VQAv2 dataset. For testing, we employed a newly constructed dataset, AOKVQA-IDS, which introduces
random variations of rain, snow, fog, and lighting adjustments to the images while retaining the AOKVQA’s question information. The
VQAv2-to-AOKVQA-IDS dataset represents multimodal-domain (image & text) alterations designed to simulate various environmental
changes within both the image and text domain in an open-world setting. MC and DA are VQA accuracy (%) calculated following [1] under
different conditions (multiple choices and direct answers). Gain (%) refers to the accuracy improvement compared with the source-only
method.

Time t
Round 1st 2nd 3rd All
Condition MC DA MC DA MC DA MeanMC MeanDA GainMC GainDA

Source-only [2] 46.55 43.60 46.55 43.60 46.55 43.60 46.55 43.60 / /
TENT-continual [3] 46.72 43.75 45.50 43.75 47.24 43.06 46.48 43.52 -0.07 -0.08
CoTTA [4] 46.98 43.62 47.42 43.53 46.81 44.03 47.07 43.72 +0.52 +0.12
PKD [5] 48.64 46.38 48.38 46.79 49.25 46.69 48.76 46.62 +2.21 +3.02
ChannelWiseDivergence [6] 48.55 46.35 49.17 46.60 49.43 46.13 49.05 46.35 +2.50 +2.75
Ours (CD-CCA) 50.22 46.88 51.27 46.60 51.52 46.94 51.00 46.81 +4.45 +3.21

significant performance improvements were achieved after
a single round of Cloud-Device Collaborative Learning.

With this, we have completed experimental analyses
across three different types of domain shifts. Additionally,
our experiments on the COCO-to-nocaps dataset, presented
in the main text, further validate our CD-CCA framework’s
sustained generalization capabilities for MLLMs from the
perspective of category-domain shift.

B.4. Comparison complementary

We have conducted more comparison experiments with
prompt tuning methods [7–9] to further demonstrate the ef-
ficacy of our method (using the same experimental settings
as in Table 2). Besides, we also implemented distillation
methods of [10–14] in our system, As shown in Table 3,
the results indicate that our method surpasses the aforemen-
tioned studies in terms of persistent generalization capabil-
ity enhancement for device-side MLLMs.

Table 3. Comparison Complementary (left) & Hyperparam-
eter Discussion. We conducted further comparative experiments
on the continuous optimization of performance for multi-modal
large models deployed on the device side, comparing with our
state-of-the-art prompt tuning method and knowledge distillation
method. The results are shown in the comparison experimental
results (left), along with a discussion on hyperparameters in the
system loss function (right) through ablation experiments, as pre-
sented in the right table.

Method Mean (BLeU) λquery λrepr λCE Mean (BLeU)
PromptSRC [7] 33.93 5 1 1 36.60
Black-VIP [8] 36.48 1 5 1 36.83

MaPLe [9] 35.92 1 1 5 37.45
DearKD [10] 37.92 2 1 1 37.70

Co-advise [11] 37.89 1 2 1 37.51
ALPKD [12] 38.01 1 1 2 37.95

ReviewKD [13] 37.65 1 1 0.5 37.33
SimKD [14] 37.52 1 1 0.1 36.25

Ours 38.35 1 1 1 38.35

B.5. Hyperparameter discussion

Hyperparameters in Eq.6 are designed to balance various
losses for effective parameter optimization. To provide a
more detailed showcase of our method and further demon-
strate its effectiveness, we conducted the following ablation
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Figure 1. Visualization of Experimental Results under Different Domain Shifts. We artificially introduced uncertainty elements (rain,
snow, fog, brightness, etc.) into the multimodal inputs to simulate the continuously changing natural environments. The intensity of added
uncertainty gradually increases from level 1 to level 5. The resulting figures illustrate the performance of the device-side deployed MLLM
in visual question answering tasks, as well as the improved outcomes following the CD-CCA optimization of the device-side MLLM.

experiments. Experimental results are shown in Table 3.

C. Additional Visualization results
To visually demonstrate the enhanced continual general-
ization ability of device-side pocket-size MLLMs in han-
dling domain shifts, facilitated by our proposed CD-CCA,
we present the following experimental results in a visual

format. As shown in Figure 1, we depict the comprehen-
sion capabilities of the device-side MLLM under various
environments, both before and after the application of CD-
CCA. It is clearly observable that, as domain shifts inten-
sify, the generalization ability of the source-only MLLM
deployed on the device-side progressively decreases. How-
ever, following efficient collaborative learning through CD-



CCA, a notable improvement in its generalization capability
is achieved.

D. Expanded Related Work
MLLMs. Current MLLMs extend beyond linguistic pro-
cessing by expanding the scale of data and model architec-
ture, enabling real-world perception and addressing limita-
tions in tasks like image captioning [15] and visual question
answering [16]. Due to constraints in model size and train-
ing costs, some scholars attempted to predominantly utilize
frozen LLM backbones, focusing exclusively on training
visual components, or adopting more streamlined and ef-
ficient training strategies such as parameter-efficient fine-
tuning[17] rather than training from scratch. Considering
the limitations imposed by computational power and net-
work bandwidth for model deployment on devices, merely
reducing the number of model-trainable parameters is in-
sufficient. Therefore, we propose the CD-CCA framework
as a solution.

Cloud-Device Collaborative Learning. Merely of-
floading the computational workload to the cloud without
considering the collaboration between the cloud and the
device, although alleviating the computational limitations
of the device, has minimal impact on enhancing the de-
vice’s ability to handle complex model processing tasks.
Some work has explored the transmission of tokens during
the computation process on devices through an Uncertainty
Guided Sampling [18] approach, aiming to enhance band-
width utilization. However, this method exhibits strong ran-
domness in the token selection, and the tokens selected may
lack sufficient semantic information. Our UTS strategy al-
lows us to reduce bandwidth while maximizing the seman-
tic information richness of the selected image tokens. In the
cloud, knowledge distillation can be leveraged to transfer
knowledge from large models to smaller models, aiming to
minimize the parameter volume transmitted from the cloud
to the device.

Knowledge Distillation (KD) is a method of model com-
pression and transfer learning [19]. Over the years, many
KD methods have been proposed that perform distillation
over intermediate features [20, 21], relation representation
[22, 23], attention [24, 25] for various vision tasks. How-
ever, for MLLMs, there is currently no specific knowledge
distillation method available to compress them effectively.
In this paper, to better serve this system, we propose an
adapter-based knowledge distillation(AKD) to get the man-
ifolds embedded in multi-modal space.

Continual Domain Adaptation. When devices are de-
ployed in the real world, the continuous variation of data
in real-world scenarios poses significant requirements for
the generalization capability of models. To achieve better
generalization performance on target data without access to
source data, TENT [26] optimizes the pre-trained model’s

Batch Normalization layers through entropy minimization,
while SHOT [27] utilizes both entropy minimization and
a diversity regularizer for information maximization. Ref-
erences [28] and [29] enhance model performance in target
domains without source data by generating target-style data.
Our work proposes a Cloud-Device Collaborative Continual
Adaptation framework enables models to adapt to dynam-
ically changing data distributions, significantly enhancing
the generalization capability of device models.

E. Demo Video and Dataset

We provide a video demo (the attached MP4 file), which
contains the motivation and intuitive introduction of our
proposed CD-CCA paradigm, the workflow of the overall
framework, and the visualization results. Furthermore, the
domain-shift VQAv2-to-AOKVQA-IDS dataset has been
made available on Google Drive for researchers to access
and utilize.
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