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Supplementary Material

1. Design of the Guiding Head
As mentioned in the main part, in order to ensure the diver-
sity of prompts, we manually define five different guiding
heads for each stage of the LLM guiding component, see
Fig. 1 for details.

2. Additional Experiments
2.1. Statistics of Datasets

The detailed statistics of four datasets are shown in Tab. 1.

2.2. Baseline Methods

QA-based models: Antol et al. [2] first proposed the task
of free-form and open-ended Visual Question Answering
(VQA), with some attempts at simple deep models. Ben-
Younes et al. [3] proposed a multimodal tensor-based de-
composition to efficiently parametrize bilinear interactions
between visual and textual representations. Gao et al. [6]
alternatively passed information within and across different
modalities based on an inter-modality and intra-modality
attention mechanisms. Haurilet et al. [8] presented a new
model for visual reasoning, aimed at capturing the inter-
play among individual objects in the image represented as
a scene graph. Kembhavi et al. [10] introduced Diagram
Parse Graphs (DPG) as representation to model the struc-
ture of diagrams, and defined syntactic parsing of diagrams
as learning to infer DPGs for diagrams. Kim et al. [11]
introduced a algorithm contains visual and textual infor-
mation in an abstract and integrated way. Kim et al. [12]
proposed BAN, which can find bilinear attention distribu-
tions to utilize given vision-language information seam-
lessly. ViLT [13] is a model that simplifies the processing
of visual inputs to a convolution-free approach similar to
how textual inputs are processed. Li et al. [14] has demon-
strated that certain attention heads of a visually grounded
language model actively ground elements of language to
image regions. Lu et al. [16] developed a strong base-
line, Patch-TRM, which parses the diagram in a pyramid
layout and applies cross-modal transformers, with attention
mechanism to learn the meaningful joint diagram-question
feature. Wang et al. [22] introduced the tasks of diagram
classification (DC) and diagram question answering (DQA)
based on the new dataset, and proposed the Diagram Par-
ing Net (DPN) that focuses on analyzing the topological
structure and text information of diagrams. Yu et al. [25]
developed a Multi-modal Factorized Bilinear (MFB) pool-
ing approach to efficiently and effectively combine multi-

modal features, which resulted in superior performance for
VQA compared with other bilinear pooling approaches. Yu
et al. [26] proposed MCAN, which consists of Modular Co-
Attention (MCA) layers cascaded in depth. Each MCA
layer models the self-attention of questions and images, as
well as the guided-attention of images jointly using a modu-
lar composition of two basic attention units. Yuan et al. [27]
proposed a novel structural parsing integrated Hierarchical
Multi-Task Learning (HMTL) model for diagram question
answering based on a multi-modal transformer framework.
Zheng et al. [29] designed a novel cross-modality relevance
module that is used in an end-to-end framework to learn the
relevance representation between components of various in-
put modalities under the supervision of a target task.

Finetune-based models: For the first time, Gomez-Perez
et al. [7] taped the potential of transformer language mod-
els and bottom-up and top-down attention to tackle the lan-
guage and visual understanding challenges that Textbook
Question Answering task entails. Ma et al. [18] proposed
a Weakly Supervised learning method for TQA (WSTQ),
which regards the incompletely accurate results of essen-
tial intermediate procedures for this task as supervision to
develop Text Matching (TM) and Relation Detection (RD)
tasks and then employs the tasks to motivate itself to learn
strong text comprehension and excellent diagram semantics
respectively. Raffel et al. [21] explored the landscape of
transfer learning techniques for NLP by introducing a uni-
fied framework that converted all text-based language prob-
lems into a text-to-text format. Xu et al. [23] proposed a
novel model named MoCA, which incorporated Multi-stage
domain pretraining and Cross-guided multimodal Attention
for the TQA task.

Prompt-based models: Chen et al. [5] proposed a model,
which is surprisingly effective for semi-supervised learning
on ImageNet, useing of big (deep and wide) networks dur-
ing pretraining and fine-tuning. OpenAI [19] proposed a
Transformer-based model and pretrain it to predict the next
token in a document. The post-training alignment process
results in improved performance on measures of factual-
ity and adherence to desired behavior. LLaVA-series [15]
model represents a novel end-to-end trained large multi-
modal model that combines a vision encoder and Vicuna for
general-purpose visual and language understanding. Yao
et al. [24] proposed Graph-of-Thought (GoT) reasoning,
which modeled human thought processes not only as a chain
but also as a graph. Zhang et al. [28] proposed Multimodal-
CoT that incorporates language and vision modalities into



LLM Guiding 1
(1) Based on the above contents, What additional knowledge is needed to solve this question?

(2) List what other background knowledge the model needs in order to solve this question.

(3) Enumerate the additional foundational knowledge required to address this question.

(4) Outline the supplementary background information essential for solving this question.

(5) Can you specify the additional foundational knowledge needed to address this question comprehensively?

LLM Guiding 2
(1) Which objects in the diagram should the model focus on in order to solve related question? List by serial 

number plus object name, for example 1. Object a; 2. Object b. 

(2) In order to solve the problem, which objects in the diagram should the model focus on? 

(3) To solve this question, the model should focus on Some key objects in the Diagram. 

(4) The model needs to identify the specific potential objects within the diagram to answer the question. 

(5) What objects in the diagram should the model prioritize when addressing the relevant question?  

LLM Guiding 3
(1) To answer the question, what potential relationships between these objects does the model need to be aware 

of? List in the following format: 1. (Object 1, Object 2, Relation a) ;  2. (Object 4, Object 5, Relation b). 

(2) In order to solve this question, what potential relationships between objects does the model need to focus on?

(3) To address this question, the model should identifying potential relationships between these objects. 

(4) To tackle this question, it's crucial for the model to identify the potential relationships between these objects. 

(5) What are the essential object relationships the model needs to be aware of  to get the right answer?

Figure 1. The design of prompts for each stage of the LLM guiding component. In the stages 2 and 3, the specific format of the answer is
only shown in the prompt (1) and is not repeated in other prompts.

Dataset
SQA-I TQA-DMC CSDQA AI2D

Diagram Q&A Diagram Q&A Diagram Q&A Diagram Q&A
Train 6,218 6,218 1,499 6,501 713 1,995 2,535 7,829
Val 2,097 2,097 660 3,285 238 664 259 906
Test 2,017 2,017 590 2,781 238 618 308 978
All 10,332 10,332 2,749 12,567 1,189 3,227 3,101 9,708

Table 1. The number of diagrams and questions of SQA-I, TQA-DMC, CSDQA, and AI2D datasets.

a two-stage framework that separates rationale generation
and answer inference.

2.3. Detailed Comparison Results

We conducted more fine-grained comparative experiments
on the SQA-I and CSDQA datasets. Tab. 2 shows the per-
formances of the baseline models and our model on the
SQA or reconstructed SQA-I dataset. Among them, the up-
per part of Tab. 2 is the experimental results on the SQA
dataset in previously published manuscripts, which divides
the questions into several categories. Similarly, we also
statistics the experimental results of CoG-DQA under the
corresponding categories in the lower part of Tab. 2. As
mentioned in the main section, the SQA-I dataset filters
questions that contain visual content in the SQA dataset.
The amount of data is reduced and the question distribution

changes accordingly, so our experimental results cannot be
compared fairly with the results in the upper part of Tab. 2.
It can be seen that under the new division, CoG-DQA is
close to the SotA performance (gray background) under the
previous full data scale, and can still reach a comparable
level with a 51.28% reduction of samples. However, the
CoG-DQA model can have obvious disadvantages in cer-
tain subjects, such as language sciences. After analysis, our
model is less effective when targeting subjects with less vi-
sual content correlation, which is also one of our future re-
search contents.

Tab. 3 shows the detailed results of the CSDQA test split.
It can be seen that the CoG-DQA model has achieved op-
timal results in almost all types of questions. For true-or-
false questions, CoG-DQA improves accuracy by 9.85%
and 5.97% on easy questions and all questions, respectively.



Model Learning Format NAT SOC LAN NO G1-6 G7-12 IMG/AVG
MCAN [26] train set QCM-A 56.08 46.23 58.09 55.40 51.65 59.72 51.17

Top-Down [1] train set QCM-A 59.50 54.33 61.82 62.90 59.79 57.27 54.88
BAN [12] train set QCM-A 60.88 46.57 66.64 65.51 56.83 63.94 52.60
DFAF [6] train set QCM-A 64.03 48.82 63.55 64.11 57.12 67.17 54.49
ViLT [13] train set QCM-A 60.48 63.89 60.27 57.00 60.72 61.90 61.38

Patch-TRM [16] train set QCM-A 65.19 46.79 65.55 64.95 58.04 67.50 55.28
VisualBERT [14] train set QCM-A 59.33 69.18 61.18 58.54 62.96 59.92 62.17

UnifiedQAbase [21] zore-shot QCM-A 68.16 69.18 74.91 77.84 72.98 65.00 61.38
UnifiedQAbase [21] train set QCM-A 71.00 76.04 78.91 81.81 77.06 68.82 66.53

GPT-3.5 [5] zero-shot QCM-A 74.64 69.74 76.00 77.42 76.80 68.89 67.28
GPT-3.5 [5] w/ CoT 2-shot QCM-AE 75.44 70.87 78.09 79.93 78.23 69.68 67.43
GPT-4 [19] w/ CoT few-shot QCM-AE 85.48 72.44 90.27 92.89 86.66 79.04 71.49
MM-CoT-large [28] train set QCM-LE-A 95.91 82.00 90.82 92.89 92.44 90.31 88.80
GoT-T5-large [24] train set QCM-LE-A 96.51 82.26 93.61 94.29 93.83 90.86 89.56

Published results on SQA ⇑
Our results on SQA-I ⇓

CoG-DQA train set QCM-A 76.10 79.45 65.91 76.45 79.71 70.92 78.85
CoG-DQA train set QCM-LE-A 92.06 79.83 74.73 91.65 89.78 83.08 89.32

Table 2. Accuracy (%) on test split of SQA (above) and SQA-I (below) datasets, along with accuracy scores for different question types,
including natural, social, and language sciences, and no context, as well as grades 1-6 and 7-12. Format names: Q = question, C = context,
M = multiple options, A = answer, E = explanation, L = lecture.

Models TF(E) TF(C) TF(ALL) MC(E) MC(C) MC(ALL) ALL
Random 50.00 50.00 50.00 25.00 25.00 25.00 37.50

MFB [25] 53.14 52.08 56.51 34.72 33.33 30.21 43.36
BAN [12] 52.08 52.07 57.29 33.33 28.13 27.34 42.32

MACN [26] 56.60 54.17 59.64 34.03 32.29 29.17 44.41
MUTAN [3] 51.39 57.29 54.43 28.47 27.08 27.86 41.15
CMR [29] 51.56 51.33 51.21 30.20 32.69 30.70 40.91
ISAAQ [7] 59.79 58.62 60.32 41.34 34.48 41.07 50.70

DPN-QA [22] 57.29 59.38 58.85 35.07 33.33 31.77 45.31
WSTQ [17] 59.28 58.62 58.62 41.04 31.03 38.49 48.55

LLaVA-1.5 (7b)[15] 63.47 61.84 62.65 28.97 28.13 28.64 47.31
LLaVA-1.5 (13b)[15] 65.54 63.96 64.43 29.76 28.16 29.36 48.65

GPT-3.5 [5] 0-shot 54.12 51.33 53.21 26.24 25.53 25.68 45.77
GPT-3.5 [5] 2-shot 64.68 65.53 65.02 27.93 26.52 27.04 46.83

GPT-4.0 [19] 2-shot 65.74 67.37 66.85 27.58 27.24 27.45 48.03
MM-CoT-large [28] 64.40 57.63 63.11 53.60 42.37 51.46 57.28

CoG-DQA 75.60 61.02 72.82 65.60 55.93 63.75 68.28

Table 3. Accuracy (%) on test split of CSDQA dataset. The best performance is bolded and the second-best performance is underlined.
TF denotes True-or-False Questions, and MC denotes Multiple Choice Questions. E indicates easy difficulty questions, and C indicates
complex difficulty questions.

However, the performances of the GPT-based models are
significant on complex multiple-choice questions but fail
on other questions. For multiple choice questions, CoG-

DQA improves accuracy by 12%, 13.56%, and 12.29% on
easy questions, complex questions, and all questions, re-
spectively. For all the questions, CoG-DQA improves the



Model Dataset
SQA-I CSDQA

w/ ResNet 78.85 68.28
w/ CLIP 78.26 67.97
w/ DETR 78.82 68.40

Table 4. Accuracy (%) of using different vision encoders on SQA-
I and CSDQA datasets.

LLM Dataset
SQA-I CSDQA

GPT 3.0 77.26 65.84
GPT 3.5 78.85 68.28

text-davinci 79.14 68.03

Table 5. Accuracy (%) of using different LLMs on SQA-I and
CSDQA datasets.

accuracy by 11%. This demonstrates the effectiveness of
our method.

2.4. Impact of Different Encoders

Visual features from different encoders can impact model
performance. Our study assesses three prominent types of
visual features: ResNet [9], CLIP [20], and DETR [4]. Both
CLIP and DETR represent patch-like features, with DETR
primarily rooted in object detection. For a fair comparison,
we uniformly set the objects dimension of all visual feature
to 50. Tab. 4 presents a comparative analysis of these visual
features. Our findings demonstrate that the integration of vi-
sual features consistently results in enhanced performance,
as opposed to models that depend exclusively on linguis-
tic data. Moreover, different encoders do not produce major
differences in experimental performance. Consequently, we
default to using ResNet in CoG-DQA due to its good gen-
eralization performance and ease of use.

2.5. Impact of LLM

The CoG module mainly uses the guiding chains to trans-
fer the effective knowledge of LLM to special areas, and
the knowledge possessed by different types of LLM is also
different. In order to explore the effect of different LLMs
on performance, we selected three popular LLMs: GPT-3,
GPT3.5, and text-davinci-003 and conducted experiments
on the SQA-I and CSDQA datasets. Tab. 5 presents a com-
parative analysis of these LLMs. According to the exper-
imental results, GPT-3.5 has similar performance to text-
davinci and is significantly better than the GPT-3.0 model.
Due to the assisting and guiding role of LLMs in the CoG-
DQA framework, it can be flexibly adjusted to the latest lan-
guage models. Since GPT-4V has not yet fully opened the
interface during our experiments, the combination with the
latest models of this type can be one of the future research

contents.

2.6. Case Study

In this section, we visualize positive and negative cases
of the CoG-DQA model on four datasets. In these cases,
we mainly visualize the response of LLMs to manually de-
signed guiding heads, as well as some key feature interac-
tion processes. Fig. 2 shows the positive case on the AI2D
dataset, where LLM gives relevant and effective responses
at each stage, assists in diagram parsing to construct key
visual and textual graphs, and obtains the correct answer.
Fig. 3 shows the positive case on the SQA-I dataset. In the
responses at different stages of LLM, there is some back-
ground knowledge (red part) that is contrary to the question,
but the small amount of noise can be ignored compared to
the acquisition of key features, and it still provides positive
help for answer reasoning. Fig. 4 shows the positive case
on the CSDQA dataset. As can be seen from this exam-
ple, there are certain scenarios where relying solely on the
object parsing and other capabilities of DPTs is enough to
reason about the correct answer.

Fig. 5 shows the negative case on the SQA-I dataset.
This common error is due to a large number of irrelevant
or incorrect responses from LLMs. The root cause is that
there are errors or inaccuracies in the automatically gen-
erated diagram captions that interfere with LLM’s under-
standing. This phenomenon may be effectively improved in
the future by replacing it with more advanced LLMs, espe-
cially LLMs that support multi-modal inputs. Fig. 6 shows
the negative case on the TQA-DMC dataset. This failure
is caused by LLMs overextended knowledge and redundant
objects that rarely overlap with objects in the diagram pars-
ing results. In future work, we consider solving this type of
problem by better balancing the interaction between LLMs
and DPTs.



Question: If all the rodents were 

extinct, what would be most affected? 

Options: 

(A) fox 

(B) bear

(C) oppossum 

(D) cougar

Diagram:

LLM Guiding Response:
(Stage 1) We would need additional background knowledge about the specific ecological roles and 

relationships that rodents have within their respective ecosystems. Rodents play various roles such as 

seed dispersers, predators, prey, and ecosystem engineers. Without rodents, the balance of these roles 

could be disrupted, potentially impacting multiple species and ecological processes. We would also 

need information about the dietary preferences and dependencies of the other animals listed (fox, 

bear, opossum, cougar) to determine their sensitivity to the absence of rodents. 

(Stage 2) 1. Fox 2. Bear 3. Opossum 4. Cougar 5. Rodents

(Stage 3) 1.(Rodents, Fox, Prey) 2.(Rodents, Bear, Opportunistic Feeder) 

3.(Rodents, Oppossum, Ecological Competitor) 4.(Rodents, Cougar, Ecosystem Balance)

Interaction and Answering:
Cougar Bear

Fox

Rodents
Oppssum

(A) fox

(B) bear

(C) oppossum

(D) cougar

Ecos...

Oppor...

Prey
Ecolo...

Figure 2. Positive case of CoG-DQA model on AI2D dataset.

Question: Which of these organisms 

contains matter that was once part of 

the lichen? 

Options: 

(A) bilberry 

(B) mushroom

Diagram:

LLM Guiding Response:
(Stage 1) To answer the question, we would need additional background knowledge about the life 

cycle and interactions between lichen, bilberry, and mushroom. Lichens are symbiotic organisms 

formed from a partnership between a fungus and an alga or cyanobacteria. They can break down 

rocks and organic matter, contributing nutrients to the environment. Bilberries are a type of fruit-

producing shrub that often grows in lichen-rich environments. Mushrooms are fungi known for their 

reproductive structures, which release spores.  

(Stage 2) 1. Lichen 2.Bilberry 3.Mushroom

(Stage 3) 1.(Lichen, Bilberry, Predator-Prey)2.(Lichen, Mushroom, Decomposer)

Interaction and Answering:

(A) bilberry 

(B) mushroom

Pre...
lichen

mush
roombilberry

Dec..

Figure 3. Positive case of CoG-DQA model on SQA-I dataset.

Question: How many nodes are 

there in the graph?

Options: 

(A) 1 

(B) 3

(C) 5

(D) 8

Diagram:

LLM Guiding Response:
(Stage 1) To determine the number of nodes in the graph, we would require additional background 

knowledge, specifically, the information regarding the vertices and edges of the graph. Without 

knowing the specific connections between the nodes (edges), we cannot accurately count the number 

of nodes. 

(Stage 2) 1. The connected components. 2. The nodes in the connected component

(Stage 3) 1.(Undirected graph, Connected component, Consists of) 2.(Connected component, Nodes, 

Counted in)

Interaction and Answering:

(A) 1 

(B) 3

(C) 5

(D) 8

LLM's response to the relationship in 

the Stage 3 is related to the question, but 

the objects involved do not overlap with 

the fine-grained objects in the diagram. 

Based on the responses of the first two 

stages, the correct answer can still be 

obtained through DPT object parsing.

LLM's response to the relationship in 

the Stage 3 is related to the question, but 

the objects involved do not overlap with 

the fine-grained objects in the diagram. 

Based on the responses of the first two 

stages, the correct answer can still be 

obtained through DPT object parsing.

Figure 4. Positive case of CoG-DQA model on CSDQA dataset.



Question: Based on the arrows, 

which of the following living things is 

an omnivore?

Options: 

(A) kelp bass 

(B) zooplankton

Diagram:

LLM Guiding Response:
(Stage 1) We would need additional background knowledge about the specific diet preferences of the 

depicted penguin and cartoon character. Without this information, we cannot confidently identify the 

omnivore solely based on the arrows. However, assuming the penguin is representative of real-life 

penguins, they are primarily carnivorous, feeding mainly on fish and other marine animals. If the 

cartoon character is not explicitly shown consuming any specific type of food, we cannot make any 

assumptions about its dietary habits. Zooplankton, on the other hand, refers to microscopic animals in 

the water and is typically consumed by filter-feeding organisms such as whales and some fish species.

(Stage 2) 1. Kelp bass 2.Zooplankton

(Stage 3) 1.(Kelp Bass, Zooplankton, Predation) 2.(Zooplankton, Phytoplankton, Consumption)

Interaction and Answering:

(A) kelp bass 

(B) zooplankton

Pred... Cons

Kelp bass

Zooplankton

Wrong relational 

semantics lead to 

wrong reasoning.

Wrong relational 

semantics lead to 

wrong reasoning.

Figure 5. Negative case of CoG-DQA model on SQA-I dataset.

Question: How many animals do 

the eagle consume?

Options: 
(A) 4 

(B) 3

(C) 1

(D) 2

Diagram:

LLM Guiding Response:
(Stage 1) To solve this problem, additional background knowledge would be required, such as the diet 

and feeding behavior of eagles in the specific ecosystem depicted in the image. Additionally, 

understanding the trophic levels and interconnections among the different organisms in the food chain 

would be helpful. Without this information, we cannot accurately determine the number of animals 

the eagle consumes.

(Stage 2) 1. Frog 2.Cricket 3.Decomposers 4.Insectivorous birds 5.Hawks and owls

(Stage 3) 1.(Insectivorous birds, Hawks/Owls, Predation)

Interaction and Answering:

(A) 4 

(B) 3

(C) 1

(D) 2
bird

The response in stage 2 
of LLM have few 
overlapping objects with 
the content of the 
diagram, and the 
relationship generated in 
stage 3 has little 
relevance to the question, 
making subsequent answer 
inferences incorrect.

The response in stage 2 
of LLM have few 
overlapping objects with 
the content of the 
diagram, and the 
relationship generated in 
stage 3 has little 
relevance to the question, 
making subsequent answer 
inferences incorrect.

Figure 6. Negative case of CoG-DQA model on TQA-DMC dataset.
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