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7. More Results
Figure 9 presents more segmentation results of our Con-
textSeg from the SPG and CreatureSketch (CS) datasets.
Our method is robust to sketches with various levels of de-
tail.

Statistical Analysis. Table 1 in the main paper demon-
strates the comparison with three competitive methods, and
our ContextSeg outperforms these competitors on all three
metrics (except for the face category). Specifically, Con-
textSeg, in particular, exhibits an average improvement of
1.1% in Stroke Accuracy (SAcc), 0.4% in Group Accuracy
(GAcc), and 1.4% in Component Accuracy (CAcc) over
Sketch-Segformer, which stands out as the most effective
among alternative methods. This discrepancy can be at-
tributed to Sketch-Segformer’s reliance on absolute coor-
dinates encoded within its graph representation, which, un-
fortunately, struggles to encapsulate essential structural in-
formation. Furthermore, the proposed ContextSeg demon-
strates an average improvement of 1.6% in SAcc, 0.6%
in GAcc, and 1.8% in CAcc compared to SketchGNN,
which similarly relies on absolute coordinates to represent
graph-based sketches. However, like Sketch-Segformer,
SketchGNN also struggles to accurately capture the struc-
tural information inherent in strokes. Ultimately, the pro-
posed ContextSeg showcases significant superiority over
SPGSeg, a sequence-based method, with an average out-
performance of 17.4% in SAcc, 10% in GAcc, and 18.7%
in CAcc. SPGSeg employs sequential encoding of sketches
using relative coordinates and stroke point pen states. How-
ever, it overlooks the proximity of strokes, contributing to
its comparative shortcomings.

7.1. Additional Ablation Study

Positional Encoding. In stroke embedding learning
(Sec. 3.1), we have used two additional coordinate channels
to augment the stroke information. To understand better its
effectiveness, we replaced the 2D coordinates with the pop-
ular 2D sinusoidal positional encoding (denoted as 2DPE
and Ours-PE for embedding and segmentation). The stroke
reconstruction result and the evaluation statistics are shown
in Fig. 10 and Tab. 5, respectively, where the reconstructed
sketch is blurry, and the segmentation metrics are all signif-
icantly inferior to ours.

Distance Field-only Embedding. To further validate the
efficacy of the distance field prediction branch, we have
trained the embedding network with only the distance field

(denoted as DF). The predicted distance field is shown in
Fig. 11, where individual strokes are barely recognized.
Besides, we have linked the embedding network with our
segmentor (denoted as Ours-DF), and report the evaluation
metrics in Tab. 5. The results are inferior to Ours and even
worse than Ours w/o DF because the sketch instead of a
dense and rough approximation is the key to the segmenta-
tion task.

Stroke-based Decoding. The design philosophy of the
group-based prediction and its effectiveness are discussed
in Sec. 3.2 and Sec. 4.2. We further experiment with stroke-
based auto-regressive decoding (denoted as Ours-S) since it
is more intuitive. Statistics are shown in the Tab. 5, where
our method achieved a remarkable 4.4% increase in terms
of average SAcc. Besides, group-based prediction is more
efficient, e.g., the average inference time on the airplane cat-
egory is two times faster (0.73s vs. 1.86s).

Group Order in Auto-regressive Decoding. By design,
the stroke order serving as the positional encoding in the
Transformer encoder does not matter the decoder predic-
tion, however, the group order matters. By default, we
empirically use the more intuitive stroke frequency-based
descend order. We have tried two alternatives: stroke fre-
quency ascend order (denoted as Ours-InvG), and a random
order (denoted as Ours-RanG). The statistics are shown in
Tab. 5, where ours archives the best while the other two are
on par with ours.

7.2. Invariance Test

Following [31, 34], we also conducted invariance tests in
terms of the anti-rotation and anti-offset ability of our ap-
proach. The experiments are conducted on four typical cat-
egories - Airplane, Calculator, Face, and Icecream, and sta-
tistical results are reported in Tab. 6.

Anti-rotation test. Regarding the anti-rotation test, we
adopted an identical experimental setup to previous stud-
ies. This setup involved the inclusion of seven distinct ro-
tation angles (i.e., −45◦, −30◦, −15◦, 0◦, +15◦, +30◦,
and +45◦) added to the entire sketch. The findings pre-
sented in Table 6 reveal a trend wherein the performance of
both competitive methods declines with increasing rotation
angles. Notably, the proposed ContextSeg exhibits a supe-
rior mean performance and a narrower standard deviation
when compared to other models. This outcome underscores
the model’s exceptional reliability, particularly in handling
sketches subjected to significant degrees of rotation.
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Figure 9. More visual results on benchmarking datasets. For each category, we select five sketch instances, and for each sketch, the ground
truth (left) and our segmentation results (right) are displayed.

Table 5. Statistical results of additional ablation studies on the SPG dataset.

Method
Airplane Calculator Face Ice cream Average

SAcc GAcc CAcc SAcc GAcc CAcc SAcc GAcc CAcc SAcc GAcc CAcc SAcc GAcc CAcc
Ours-PE 89.3 91.9 85.6 96.1 95.7 96.8 93.4 95.4 93.4 93.1 94.5 91.2 93.0 94.4 91.8
Ours-DF 83.4 86.6 81.3 90.1 91.7 87.2 89.4 89.2 86.3 86.7 89.3 84.2 87.4 89.2 84.8
Ours-S 88.6 91,1 84.7 94.4 95.8 93.6 92.1 94.6 91.7 91.8 92.3 89.6 91.7 93.5 89.9

Ours-InvG 92.6 94.0 88.6 98.6 98.1 97.0 95.9 97.9 93.8 95.2 96.1 91.7 95,6 96.5 92.8
Ours-RanG 92.8 94.1 88.7 98.7 98.2 97.1 96.1 98.0 94.1 95.4 96.2 91.9 95.8 96.8 93.0

Ours 93.2 94.9 89.5 99.2 98.7 97.5 96.4 98.4 94.8 95.9 96.5 92.4 96.1 97.1 93.6
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Figure 10. Sketch reconstruction from 2DPE and Ours.
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Figure 11. Distance field prediction from DF.

Anti-offset test. For the offset test, given a testing sketch,
we first calculate the diagonal length d of the bounding box,
and for each stroke, we randomly sample an offset from a
uniform distribution - (∆x,∆y) ∼ N (0, σ2), where σ is set
at 0.05d, 0.1d, 0.15d, and 0.20d, respectively. As expected,
our performance drops when increasing the offset distance,
but we still obtain superior accuracy than SketchGNN [31]
and Sketch-Segformer [34] at each variation, which indi-
cates the excellent robustness of our approach.

The results from both tests strongly suggest that Con-
textSeg possesses greater robustness, showcasing its abil-
ity to sustain segmentation accuracy despite offsets or ro-
tations. This signifies its strength in effectively managing
spatial variations within the data.
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Figure 12. Exemplar results with imperfect segmentation. For
each case, the ground truth (left) and our prediction (right) are
shown.

7.3. Failure Cases

Figure 12 demonstrates several failure cases of our method.
The imperfection primarily arises from two contributing
factors. Firstly, our segmentation Transformer encoun-
ters difficulties in accurately labeling strokes within heav-
ily overlapped areas. For instance, in Fig. 12 (a) and (b),
distinguishing between hair and eyelash strokes becomes
challenging due to their dense concentration, leading to seg-
mentation inaccuracies. Similarly, in Fig. 12 (e) and (f), the
intricate decorations on the basket pose challenges as our
segmentation model erroneously categorizes them as part
of the body. Secondly, our embedding network encoun-
ters limitations in encoding strokes characterized by rapid
and substantial variations. For instance, in Fig. 12 (c) and
(d), the leaves and ornamentation of the pineapple exhibit
strokes with rapid fluctuations. Such variations can result in
suboptimal embeddings, potentially causing misinterpreta-
tions for our segmentation Transformer. Consequently, cer-
tain strokes might be inaccurately classified as part of the
body.

8. Implementation Detail
All experiments were conducted on a single Nvidia
RTX3090 GPU. We implement our networks using Tensor-
flow, and detailed network structures are shown in Fig. 13.

The embedding network has an encoder-decoder struc-
ture, accepting the grayscale sketch input augmented with x
and y coordinate channels. Specifically, the encoder com-
prises 10 layers grouped into four segments, each character-
ized by distinct feature dimensions (i.e., 64, 128, 256, and
512), resulting in a stroke embedding of 256d. Both de-
coder branches share an identical encoder structure, work-
ing symmetrically to transform the stroke embedding into
sketch reconstruction and the distance map.

The segmentation Transformer has 4 attention layers in
both the encoder and decoder, each layer has 4 attention
heads and the dropout rate is 0.4.
Network Training. We first train the embedding network
until convergence, which takes around 15 hours with a batch
size of 64. Then, the segmentation Transformer is trained
until convergence taking around 10 hours with a batch size
of 8. Adam [12] optimizer was used in both network train-
ing with a fixed learning rate 10−4 and other default param-
eters.
Teacher Forcing Gap. Teacher-forcing is widely used for
Transformer training. However, it introduces the exposure
bias issue by feeding the ground truth context to the decoder
at training time while exploiting the inferior prediction at
testing time. To overcome the teacher-forcing gap, in our
case, we follow [20] to forward the decoder twice to mix
the predicted group of strokes with the ground truth group
of strokes. The ratio of the ground truth strokes gradually



Table 6. Statistical comparison of the invariance tests on four representative categories.

Angle/Distance
SketchGNN [31] Sketch-Segformer [34] Ours

Airplane Calculator Face Ice cream Airplane Calculator Face Ice cream Airplane Calculator Face Ice cream
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−45◦ 87.7 92.4 90.7 88.4 88.2 93.1 90.2 87.5 90.1 94.9 91.7 90.8
−30◦ 89.4 94.7 93.2 91.3 89.9 95.4 92.1 90.5 91.0 97.2 94.1 92.1
−15◦ 90.4 97.6 95.7 93.4 91.3 98.1 94.8 92.1 92.6 98.5 95.9 94.3

0 91.1 98.4 96.2 94.5 92.4 98.5 97.2 94.4 93.2 99.2 96.4 95.9
+15◦ 90.1 97.1 95.2 92.9 91.1 98.3 94.1 92.7 92.9 98.2 95.5 94.1
+30◦ 89.2 94.3 93.1 90.8 90.0 95.9 92.7 90.1 91.3 97.4 93.9 92.3
+45◦ 87.2 92.1 90.1 87.8 88.5 93.7 89.6 87.1 89.5 95.3 91.3 90.4

Average 89.3 95.2 93.5 91.3 90.2 96.1 93.0 90.6 91.5 97.2 94.1 92.8
Standard Deviation 1.4 2.5 2.4 2.5 1.5 2.2 2.7 2.7 1.4 1.6 2.0 2.0
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0 91.1 98.4 96.2 94.5 92.4 98.5 97.2 94.4 93.2 99.2 96.4 95.9
0.05σ 90.3 96.5 92.4 91.4 90.5 96.7 92.7 91.3 91.1 97.4 93.5 92.1
0.1σ 88.1 93.0 90.4 89.2 88.7 93.4 91.0 88.4 89.1 94.1 91.9 90.1
0.15σ 85.5 89.4 87.1 86.1 85.2 88.7 87.6 85.3 86.4 91.4 88.4 87.8
0.20σ 79.9 85.4 81.0 82.5 78.6 84.2 82.1 81.9 82.4 87.5 83.7 84.5

Average 87.0 92.5 89.4 88.7 87.1 92.3 90.1 88.3 88.4 93.9 90.8 90.1
Standard Deviation 4.5 5.3 5.7 4.6 5.4 5.9 5.7 4.9 4.2 4.7 4.9 4.3
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Figure 13. Detailed structure of our embedding and segmentation networks.

decreases from 100% to 20% along with the training pro-
cess.

9. Dataset Details

Evaluation Metrics. The three metrics we used in the paper

are defined as:

• Stroke Accuracy (SAcc) calculates the percentage of
correctly labeled strokes. For a point-based stroke repre-
sentation, if a minimum of 75% of its points are correctly
labeled, then the stroke is correctly labeled.



• Grouping Accuracy (GAcc) measures the accuracy of
the group-based classification task in our segmentation
Transformer. Suppose the ground truth classification la-
bels are stored in a binary matrix MS×C, where S is
the total number of strokes and C is the total number of
groups/categories. Mi,j = 1 if and only if stroke si be-
longs to gj . The Transformer predicts M ′ given a sketch
si, we thus calculate the grouping accuracy as:

GAcc =
1

S×C
|M −M ′| . (7)

• Component Accuracy (CAcc) measures the percentage
of correctly labeled categories. A category is deemed ac-
curately labeled if a minimum of 75% of its strokes re-
ceive the correct labels.

Data Augmentation. To enrich the diversity of the dataset
and improve the robustness of the trained networks, we ap-
ply both stroke-level and sketch-level data augmentations.
For the former, we rotate, scale, and add a positional pertur-
bation to one or more strokes within a sketch. While, for the
latter, we rotate and scale the sketch image, and randomly
discard strokes from sketch images as well.
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