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Supplementary Material

A . Overview

This supplementary document offers further information,
results, and visualizations to complement the primary pa-
per. Specifically, we encompass:

• Details on data collection;
• Details on training and testing procedures;
• Details on the design of evaluation levels;
• Comparision to other data generation methods;
• More ablation studies;
• Additional details on the derivation of data augmentation

for randomizing object poses.

B . Implementation details

In this section, we provide an overview of the data collec-
tion, training, and testing processes.

B .1. Human Demonstration Collection

The human play data is gathered through a teleoperation
setup, where a human operator controls the system using a
single real-sense camera in both the simulated and real en-
vironments. The entire trajectory is recorded at a rate of 30
frames per second, with each trajectory spanning approxi-
mately 20-30 seconds.

In the real-world setting, an additional real-sense cam-
era is used to capture RGB images, which serve as the ob-
servations in the dataset. To ensure alignment between the
simulated and real environments, we perform hand-eye cali-
bration in the real world. This calibration process allows us
to determine the relative position between the camera and
the robot arm, enabling us to apply this transformation in
the simulation.

B .2. Real World Setup

The system design for data collection is shown in Figure
6. As represented in the figure, the collection of human
play data incorporates a human operator and a camera. The
camera captures video footage at a frequency of 30 frames
per second. Throughout the data collection process, the hu-
man operator interacts with the scene without any defined
task objective. Instead, they interact freely with the envi-
ronment, motivated by curiosity and the intent to observe
intriguing behaviors.

In our experiments, human play data is collected by
recording 30 seconds of uninterrupted interaction in each
demonstration. This timeframe permits ample data to be
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Figure 6. Details of System Setups in Real World

gathered, yielding a rich and varied collection of behaviors
for examination and study.

B .3. Policy Training

We use a conditional VAE [68] for training on 100 simula-
tion demonstrations. The action chunking size was fixed at
50, in line with the methodology adopted in [85]. Following
the simulation data training, the model was fine-tuned with
15 real-world demonstrations, using a smaller learning rate
and distinct batch norms for the real-world data.

Hyperparameters related to policy learning are displayed
in Table 4, whereas Table 5 lists the hyperparameters perti-
nent to auto-curriculum learning.

To infuse diversity into the augmentation process, we
have incorporated a randomness scale that ranges from 0 to
10 for each augmentation. In the context of auto-curriculum
learning, this randomness scale progressively rises with a
constant variance throughout each testing cycle.

In the course of auto-curriculum learning, the policy’s
performance is assessed across all four simulation levels,
and the success rate is averaged. If the success rate falls
below the success rate threshold, the increase in randomness
scale is halted. This strategy aids in maintaining a balance
between introducing randomness and ensuring the policy
consistently accomplishes its tasks.

In summary, these hyperparameters and the evaluation
procedure in auto-curriculum learning allow the policy to
evolve and enhance over time, gradually escalating the ran-
domness scale while preserving a satisfactory success rate.



Hyperparameter Default
Batch Size 128
Num of Epochs None
Finetuning Epochs 3000
Optimizer AdamW
Learning Rate (LR) 1e-5
Finetuning LR 1e-6
Weight Decay 1e-2
Evaluation Frequency 100 epochs
Encoder Layers 4
Decoder Layers 7
Heads 8
Feedforward Dimension 3200
Hidden Dimension 256
Chunk Size 50
Dropout 0.1

Table 4. Hyperparameters of Policy Network

Hyper Parameters Default
Test Cycles 300
Evaluation Freq 100 epochs
Randomness Variance For Each Cycle 0.2
Success Rate Threshold 15%
Data Generation Rate Threshold 30%

Table 5. Hyperparameters for Auto Curriculum Learning

B .4. Policy Testing

During the real-world testing phase, we perform both in-
domain and out-of-domain tests to evaluate the performance
of the model. For out-of-domain tests, we significantly ran-
domize the positions of objects, consciously choosing loca-
tions not included in the original data. This step guarantees
that the model is examined in unfamiliar situations, evalu-
ating its capacity to generalize and adjust to novel object
arrangements.

Moreover, to introduce visual disruptions and test the ro-
bustness of the model, we incorporate a disco light. The
disco light generates visual disturbances and adds an extra
layer of complexity to the test environment. This approach
enables us to assess the model’s resilience in dealing with
unexpected visual inputs and its ability to sustain perfor-
mance amidst such disruptions.

In the concluding stage, we evaluate the policy’s ability
to generalize across a range of objects, as illustrated in Fig-
ure 7. To carry out this generalizability test, we enhance
the initial 100 simulation demonstrations by introducing
10 unique objects (adding 10 additional demonstrations for
each object), and then re-run our pipeline. For the pick and
place task in the real-world setting, we collected 15 demon-
strations involving three different objects (with five demon-

strations performed for each object within the red frame).
For the rotating task, the real-world dataset includes only
one object, identical to the original testing case.

By conducting these assessments and incorporating a va-
riety of objects, we aim to evaluate the policy’s adaptability
and performance in diverse situations, ensuring its robust-
ness and flexibility. A selection of demos is displayed in
Figure 8.

B .5. Details of Simulation Evaluation Level designs

In the Pick & Place and Pour tasks, we have defined differ-
ent levels to introduce varying degrees of randomness:
• Level 1 signifies the original domain and encompasses

slight randomization of the pose of the manipulated ob-
jects, including the end-effector pose and orientation.

• Level 2 includes randomization of lighting and texture.
• Level 3 incorporates minimal randomization of the target

objects (plate in pick place, bowl in pouring).
• Level 4 escalates the randomness scale of both the manip-

ulated and target objects.
For Rotate task since there is only one object, things are
different for the Rotate task:
• Level 1 is set as randomizing the orientation of the ob-

jects, which is also the original domain.
• Level 2 is the same as pick place and pouring tasks.
• Level 3 is adding the randomization of the end-effector

pose of the manipulated objects.
• Level 4 increases the randomness scale of the manipu-

lated objects.
Below are the defined randomness parameters for each task,
with all numbers listed in international units if without a
statement. In our settings, the position (0,0) represents the
center of the table.
Level Design for Pick and Place
• Random Manipulated Object Pose with a small scale:

– The x-coordinate of the Manipulated Object ranges
from -0.1 to 0.1.

– The y-coordinate of the Manipulated Object ranges
from 0.2 to 0.3.

– The Manipulated Object’s z-axis Euler degree ranges
from 80 to 90.

• Random Light and Texture(The randomness scale here is
fixed to be 2):
– The direction of the light is constrained within a circu-

lar range. The radius of this circle spans from 0.5 to
the randomness scale * 0.1.

– To determine the color of each channel for the lights, a
uniform sampling approach is employed. This involves
selecting a value within the range [default color of that
channel - randomness scale * 0.1, default color of that
channel + randomness scale * 0.1].

– The ground color and sky color of the environment map
are randomized in the same way as lights.



• Random Target Object Pose with a small scale:
– The x-coordinate of the Target Object ranges from -0.1

to 0.1.
– The y-coordinate of the Target Object ranges from -0.3

to -0.1.
• Random Manipulated and Target Object Pose with a

Large scale:
– The x-coordinate of the Manipulated Object ranges

from -0.2 to 0.2.
– The y-coordinate of the Manipulated Object ranges

from 0.1 to 0.3.
– The Manipulated Object’s z-axis Euler degree ranges

from 70 to 90.
– The Manipulated Object’s z-axis Euler degree ranges

from 80 to 90.
– The x-coordinate of the Target Object ranges from -0.2

to 0.2.
– The y-coordinate of the Target Object ranges from -0.3

to 0.
Level Design for Pour
• Random Manipulated Object Pose with a small scale:

– The x-coordinate of the Manipulated Object ranges
from -0.1 to 0.1.

– The y-coordinate of the Manipulated Object ranges
from -0.2 to -0.1.

– The Manipulated Object’s z-axis Euler degree ranges
from 0 to 179.

• Random Light and Texture(The randomness scale here is
fixed to be 2): same as pick and place.

• Random Target Object Pose with a small scale:
– The x-coordinate of the Target Object ranges from -0.1

to 0.1.
– The y-coordinate of the Target Object ranges from 0.2

to 0.3.
• Random Manipulated and Target Object Pose with a

Large scale:
– The x-coordinate of the Manipulated Object ranges

from -0.1 to 0.15.
– The y-coordinate of the Manipulated Object ranges

from -0.3 to 0.
– The x-coordinate of the Target Object ranges from -0.2

to 0.2.
– The y-coordinate of the Target Object ranges from 0.2

to 0.4.
– The Manipulated Object’s z-axis Euler degree ranges

from 0 to 359.
Level Design Rotate
• Random Manipulated Object Pose with a small scale:

– The Manipulated Object’s z-axis Euler degree ranges
from 0 to 30.

• Random Light and Texture(The randomness scale here is
fixed to be 2): same as pick and place.

• Random Manipulated Object Pose with a small scale:
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Figure 7. Object Sets in Real World. The objects located within
the red frame are allocated for training, while the remaining ob-
jects are set aside for testing on previously unseen objects.

– The x-coordinate of the Target Object ranges from -0.1
to 0.1.

– The y-coordinate of the Target Object ranges from -
0.15 to 0.15.

• Random Manipulated Pose with a Large scale:
– The x-coordinate of the Manipulated Object ranges

from -0.2 to 0.2.
– The y-coordinate of the Manipulated Object ranges

from -0.3 to 0.3.
– The Manipulated Object’s z-axis Euler degree ranges

from 0 to 60.

C . More Experimental Results
C .1. Comparision of Data Generation Method

To test our data augmentation approach’s effectiveness,
we pretrained using simulation data augmented by Mimic-
Gen [44] and then fine-tuned with real-world teleoperation
data, a sim2real transfer not included in the original Mimic-
Gen framework. As shown in Figure 6, MimicGen adds an
interpolated trajectory (in purple) to new object poses, po-
tentially causing abrupt transitions. Our method, however,
seamlessly integrates the entire sequence, resulting in more
fluid motion. The imitation learning policy trained with our
data thus outperforms others, as evidenced by the improved
results in simulation and reality shown in the table.

C .2. Ablation on Action Aggregation

As illustrated in Figure 9, the use of action aggregation with
Small Motion extends beyond its advantages in imitation
learning within a single domain. It also functions as an ef-
fective instrument in closing the gap between simulated and
real environments. As illustrated in Figure 10, the success



Figure 8. Pick and Place Evaluation on diverse real-world ob-
jects.

Simulation Real World

Level 1 Level 2 Level 3 Level 4
In

Domain
Out of

Position
Random

Light
MimicGen 75.5% 49% 19.5% 14% 2/20 1/20 5/20
Ours 80% 61% 43.5% 57% 7/20 6/20 8/20

Table 6. Comparision to MimicGen. We compare our data aug-
mentation method with the one used in MimicGen on the Pick and
Place task. For real-world experiments, we fine-tuned it with the
same real-world data as other methods.
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Figure 9. Success Rate on Action Aggregation
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Figure 10. Ablation on Action Aggregation with Small Motion
in Simulation. Success rate evaluate in simulator when the policy
is trained on dataset with and without action aggregation.
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Figure 11. Ablation on Multi-View Augmentaion

rate of the policy becomes more pronounced as the level
of difficulty escalates. This suggests that action aggregation
becomes increasingly beneficial for more challenging tasks.

C .3. Ablation on Novel Camera Views

As demonstrated in Figure 11, the application of ran-
dom camera views augmentation improves the policy’s ro-
bustness, particularly in situations involving camera view
changes. In this method, all levels remain consistent while
minor alterations to the camera view are incorporated.

These changes involve a combined rotation along the y-
axis and z-axis, plus a slight shift in the x, y, and z direc-
tions. The rotation Euler angle is sampled within the range
of [−15, 15], enabling managed variation in the camera’s
alignment. Additionally, the translation is sampled within
the range of [−0.05m, 0.05m], allowing minor adjustments
in the camera’s placement.

By integrating these alterations, the multi-view aug-
mentation method introduces realistic variations in camera
perspectives, thereby enhancing the policy’s resilience to
changes in the viewpoint. This strategy boosts the model’s
capability to adapt and perform efficiently, even when con-
fronted with varied camera angles and positions.

C .4. Ablation on Kinematics Augmentation

We ablate the augmentation methods with or without sen-
sitivity analysis (in contrast, simply relocating the end-
effector to a new pose). We test both methods in an environ-
ment where object poses are extensively randomized, to ver-
ify the effectiveness of these two kinematic augmentation



Test in Sim Test in Real

Dataset Level 1 Level 2 Level 3 Level 4 In Domain Out of Position
50 sim 73.5% 80% 63.5% 36% 0% 0%

35 sim + 15 real 77% 70.5% 61% 45.5% 25% 35%
15 sim + 35 real 63% 74% 55% 33.5% 50% 15%

50 real 0% 0% 0% 0% 10% 0%

Table 7. Ablation on Ratio of Sim and Real Demos. We compare
the performance resulting from various quantities of simulated and
real demonstrations, keeping the total number of demonstrations
constant.

approaches. Figure 12 illustrates the success rate during
training using datasets generated via these distinct augmen-
tation strategies. Our findings demonstrate that, through the
application of our proposed techniques, the model demon-
strates consistent improvement over all three manipulation
tasks. These outcomes underscore the efficacy of incorpo-
rating sensitivity analysis into pose data augmentation.

Figure 12. Augmentation Comparison We apply kinematic aug-
mentation to one selected original demo, adapting it to a new po-
sition utilizing both the MimicGen method and ours.
C .5. Ablation on Ratio of Sim and Real Demos

To determine the optimal ratio between sim and real de-
mos, we conducted tests using different combinations of
sim and real demonstrations, as shown in Table 7. We ob-
serve that training solely on 50 real demonstrations results
in poor performance, and the policy overfit to joint positions
rather than utilizing the visual information in images. The
best results were obtained with a combination of 15 sim-
ulation demonstrations and 35 real demonstrations. These
results highlight that collecting simulation data can be ex-
ceptionally valuable, even more so considering the signifi-
cantly lower data collection costs.

D . Derivation of Data Augmentation
In this section, we delve deeper into the derivation of the
formula applied in the data augmentation of random object
pose. We reproduce Equation 2 from the main paper and
provide a detailed explanation:

ψsegj =
ψsegj∑M
j=1 ψsegj

, ∀segj

∆Tj = exp(ψsegj log(∆T )/K)

anewi = aifi(∆Tj)

(3)

The first line of the equation normalizes the robustness
score computed from Equation 1 in the main paper, ensuring

that the sum of all scores equals 1. This parameter can be
interpreted as a weight for each action chunk, symbolizing
the proportion of modification each chunk should undertake
to guide the robot to the new pose.

The second line calculates the relative pose modification
for each step in chunk j. There are K steps in chunk j,
and each step is allocated the same quantity of modification
within the same chunk. Here, log() maps the SE(3) Lie
Group to its se(3) Lie algebra, where exp is its inverse,
mapping se(3) back to SE(3).

The third line of this equation computes the new ac-
tion based on the pose modification. Here, fi is a sim-
ilarity transformation in the SE(3) space that transitions
the motion from the world frame to the current end-effector
frame. We now provide a detailed derivation of fi. Since
∆T = TOnew

W (TOold

W )−1 = TOnew

Oold
, this relative pose

change is a representation in the old object pose frame.
To use this pose transformation to modify the action, we
need to transform this relative pose into the frame corre-
sponding to the action, which is the frame of the current
end-effector pose. Considering the similarity transforma-
tion TA

BX(TA
B )−1, which transforms a SE(3) motion X

represented in frame B to frame A, fi can be derived as
fi(∆T ) = TOold

Ri
∆T (TOold

Ri
)−1, where TRi is the robot

end-effector pose in frame i.
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